Variational formulation of thermomechanical problems
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 3, pp. 246-263

Voir la notice du chapitre de livre provenant de la source Math-Net.Ru

This article proposes that a 4D space-time continuum is used for building variational thermomechanical continuum models. In order to identify physical constants in reversible processes, physically justified hypotheses were formulated. They are the hypotheses of complementary shear stress, classical dependence of momentum on velocity, and heat flow potentiality (generalized Maxwell–Cattaneo law). The Duhamel–Neumann law was assumed to be classical. In the considered model, the generalized Maxwell–Cattaneo and Duhamel–Neumann laws were not introduced phenomenologically. They were derived from the compatibility equations by excluding thermal potential from the constitutive equations for temperature, heat flow, and pressure. Dissipation channels were considered as the simplest non-integrable variational forms, which are linear in the variations of arguments. As a result, a variational principle that generalizes L.I. Sedov’s principle was developed. It is a consequence of the virtual work principle and termed as the difference between the variation of the Lagrangian of reversible thermomechanical processes and the algebraic sum of dissipation channels. It was proved that for the classical thermomechanical processes, with second-order differential equations, there can only exist six dissipation channels. Two of them determine dissipation in an uncoupled system – in the equations of motion and heat balance. The remaining four channels define coupling effects in coupled problems of dissipative thermomechanics.
Keywords: thermoelasticity, heat balance, thermomechanical processes, reversibility and dissipativity, generalized Maxwell–Cattaneo law, generalised Duhamel–Neumann law, identification of thermoelastic moduli.
@article{UZKU_2023_165_3_a5,
     author = {S. A. Lurie and P. A. Belov and A. V. Volkov},
     title = {Variational formulation of thermomechanical problems},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {246--263},
     publisher = {mathdoc},
     volume = {165},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a5/}
}
TY  - JOUR
AU  - S. A. Lurie
AU  - P. A. Belov
AU  - A. V. Volkov
TI  - Variational formulation of thermomechanical problems
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2023
SP  - 246
EP  - 263
VL  - 165
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a5/
LA  - ru
ID  - UZKU_2023_165_3_a5
ER  - 
%0 Journal Article
%A S. A. Lurie
%A P. A. Belov
%A A. V. Volkov
%T Variational formulation of thermomechanical problems
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2023
%P 246-263
%V 165
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a5/
%G ru
%F UZKU_2023_165_3_a5
S. A. Lurie; P. A. Belov; A. V. Volkov. Variational formulation of thermomechanical problems. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 3, pp. 246-263. http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a5/