Variational formulation of thermomechanical problems
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 3, pp. 246-263 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article proposes that a 4D space-time continuum is used for building variational thermomechanical continuum models. In order to identify physical constants in reversible processes, physically justified hypotheses were formulated. They are the hypotheses of complementary shear stress, classical dependence of momentum on velocity, and heat flow potentiality (generalized Maxwell–Cattaneo law). The Duhamel–Neumann law was assumed to be classical. In the considered model, the generalized Maxwell–Cattaneo and Duhamel–Neumann laws were not introduced phenomenologically. They were derived from the compatibility equations by excluding thermal potential from the constitutive equations for temperature, heat flow, and pressure. Dissipation channels were considered as the simplest non-integrable variational forms, which are linear in the variations of arguments. As a result, a variational principle that generalizes L.I. Sedov’s principle was developed. It is a consequence of the virtual work principle and termed as the difference between the variation of the Lagrangian of reversible thermomechanical processes and the algebraic sum of dissipation channels. It was proved that for the classical thermomechanical processes, with second-order differential equations, there can only exist six dissipation channels. Two of them determine dissipation in an uncoupled system – in the equations of motion and heat balance. The remaining four channels define coupling effects in coupled problems of dissipative thermomechanics.
Keywords: thermoelasticity, heat balance, thermomechanical processes, reversibility and dissipativity, generalized Maxwell–Cattaneo law, generalised Duhamel–Neumann law, identification of thermoelastic moduli.
@article{UZKU_2023_165_3_a5,
     author = {S. A. Lurie and P. A. Belov and A. V. Volkov},
     title = {Variational formulation of thermomechanical problems},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {246--263},
     year = {2023},
     volume = {165},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a5/}
}
TY  - JOUR
AU  - S. A. Lurie
AU  - P. A. Belov
AU  - A. V. Volkov
TI  - Variational formulation of thermomechanical problems
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2023
SP  - 246
EP  - 263
VL  - 165
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a5/
LA  - ru
ID  - UZKU_2023_165_3_a5
ER  - 
%0 Journal Article
%A S. A. Lurie
%A P. A. Belov
%A A. V. Volkov
%T Variational formulation of thermomechanical problems
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2023
%P 246-263
%V 165
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a5/
%G ru
%F UZKU_2023_165_3_a5
S. A. Lurie; P. A. Belov; A. V. Volkov. Variational formulation of thermomechanical problems. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 3, pp. 246-263. http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a5/

[1] D. D. Joseph, L. Preziosi, “Heat waves”, Rev. Mod. Phys., 61:1 (1989), 41–73 | DOI | MR | Zbl

[2] S. Lepri, R. Livi, A. Politi, “Thermal conduction in classical low-dimensional lattices”, Phys. Rep., 377:1 (2003), 1–80 | DOI | MR

[3] A. Dhar, “Heat transport in low-dimensional systems”, Adv. Phys, 57:5 (2008), 457–537 | DOI

[4] G. Zhang, B. Li, “Impacts of doping on thermal and thermoelectric properties of nanomaterials”, Nanoscale, 2:7 (2010), 1058–1068 | DOI

[5] C. Cattaneo, “Sur une forme de l'equation de la chaleur eliminant la paradoxe d'une propagation instantantee”, C. R. de l'Acad. des Sci, 247 (1958), 431–433 | MR

[6] M. Wang, B. Y. Cao, Z. Y. Guo, “General heat conduction equations based on the thermomass theory”, Front. Heat Mass Transfer., 1:1 (2010), 013004 | DOI

[7] S. L. Sobolev, “Rapid phase transformation under local non-equilibrium diffusion conditions”, Mater. Sci. Technol., 31:13, Pt. A B (2015), 1607–1617 | DOI

[8] S. A. Lure, P. A. Belov, Yu. G. Yanovskii, “O modelirovanii teploperenosa v dinamicheski deformiruemykh sredakh”, MKMK, 6:3 (2000), 436–444 | MR

[9] V. N. Belov, A. G. Gorshkov, S. A. Lurie, “Variational model of nonholonomic 4D-media”, Mech. Solids, 41:6 (2006), 22–35

[10] S. A. Lurie, P. A. Belov, “On the nature of the relaxation time, the Maxwell-Cattaneo and Fourier law in the thermodynamics of a continuous medium, and the scale effects in thermal conductivity”, Continuum Mech. Thermodyn, 32:4 (2020), 709–728 | DOI | MR | Zbl

[11] E. V. Lomakin, S. A. Lurie, P. A. Belov, L. N. Rabinskiy, “On the generalized heat conduction laws in the reversible thermodynamics of a continuous medium”, Dokl. Phys, 63:12 (2018), 503–507 | DOI

[12] P. A. Belov, S. A. Lurie, “On variation models of the irreversible processes in mechanics of solids and generalized hydrodynamics”, Lobachevskii J. Math, 40:7 (2019), 896–910 | DOI | MR | Zbl

[13] P. A. Belov, S. A. Lurie, V. N. Dobryanskiy, “Variational formulation of linear equations of coupled thermohydrodynamics and heat conductivity”, Lobachevskii J. Math, 41:10 (2020), 1949–1963 | DOI | MR | Zbl

[14] A. A. Gusev, S. A. Lurie, “Wave-relaxation duality of heat propagation in Fermi-Pasta-Ulam chains”, Mod. Phys. Lett. B, 26:22 (2012), 125–145 | DOI

[15] L. I. Sedov, M. E. Eglit, “Postroenie negolonomnykh modelei sploshnykh sred s uchetom konechnosti deformatsii i nekotorykh fiziko-khimicheskikh effektov”, Dokl. AN SSSR, 142:1 (1962), 54–57

[16] L. I. Sedov, “Mathematical methods for constructing new models of continuous media”, Russ. Math. Surv, 20:5 (1965), 123–182 | DOI | MR

[17] P. A. Belov, S. A. Lure, “Variatsionnaya formulirovka gradientnoi neobratimoi termodinamiki”, Vestn. PNIPU. Mekhan, 2023, no. 5, 36–44

[18] Q. Lu, X. Li, X. Zhang, M. Lu, Y. Chen, “Perspective: Acoustic metamaterials in future engineering”, Engineering, 17 (2022), 22–30 | DOI