A Stefan problem for composite materials with an arbitrary number of moving phase-transition boundaries
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 3, pp. 236-245
Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
A Stefan problem of heat transfer in semi-infinite bodies with an arbitrary number of unsteady moving boundaries during phase transitions was solved. Such problems arise when composite materials are heated at high temperatures, causing the binding agents to decompose (destruct) thermally, which leads to the formation of moving boundaries in the onset and end of phase transitions, mass transfer, etc. An analytical solution of the Stefan problem with an arbitrary number of unsteady moving boundaries was obtained. The heat transfer process with two moving boundaries was analyzed.
Keywords:
heat transfer, Stefan problem, moving boundary, composite material, destruction of binding agents, analytical solution.
@article{UZKU_2023_165_3_a4,
author = {E. L. Kuznetsova and S. I. Zhavoronok},
title = {A {Stefan} problem for composite materials with an arbitrary number of moving phase-transition boundaries},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {236--245},
publisher = {mathdoc},
volume = {165},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a4/}
}
TY - JOUR AU - E. L. Kuznetsova AU - S. I. Zhavoronok TI - A Stefan problem for composite materials with an arbitrary number of moving phase-transition boundaries JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2023 SP - 236 EP - 245 VL - 165 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a4/ LA - ru ID - UZKU_2023_165_3_a4 ER -
%0 Journal Article %A E. L. Kuznetsova %A S. I. Zhavoronok %T A Stefan problem for composite materials with an arbitrary number of moving phase-transition boundaries %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2023 %P 236-245 %V 165 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a4/ %G ru %F UZKU_2023_165_3_a4
E. L. Kuznetsova; S. I. Zhavoronok. A Stefan problem for composite materials with an arbitrary number of moving phase-transition boundaries. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 3, pp. 236-245. http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a4/