Voir la notice du chapitre de livre
@article{UZKU_2023_165_3_a3,
author = {U. P. Karaseva and A. B. Freidin},
title = {On the effect of stress on the nonequilibrium viscosity of glasses},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {219--235},
year = {2023},
volume = {165},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a3/}
}
TY - JOUR AU - U. P. Karaseva AU - A. B. Freidin TI - On the effect of stress on the nonequilibrium viscosity of glasses JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2023 SP - 219 EP - 235 VL - 165 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a3/ LA - ru ID - UZKU_2023_165_3_a3 ER -
%0 Journal Article %A U. P. Karaseva %A A. B. Freidin %T On the effect of stress on the nonequilibrium viscosity of glasses %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2023 %P 219-235 %V 165 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a3/ %G ru %F UZKU_2023_165_3_a3
U. P. Karaseva; A. B. Freidin. On the effect of stress on the nonequilibrium viscosity of glasses. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 3, pp. 219-235. http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a3/
[1] D. B. Kao, J. P. McVittie, W. D. Nix, K. C. Saraswat, “Two-dimensional thermal oxidation of silicon. II. Modeling stress effects in wet oxides”, IEEE Trans. Electron Devices, 35:1 (1988), 25–37 | DOI
[2] M. T. McDowell, S. W. Lee, W. D. Nix, Y. Cui, “25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries”, Adv. Mater, 25:36 (2004), 4966–4984 | DOI
[3] M. Poluektov, A. B. Freidin, L. Figiel, “Modelling stress-affected chemical reactions in non linear viscoelastic solids with application to lithiation reaction in spherical Si particles”, Int. J. Eng. Sci, 128 (2018), 44–62 | DOI | MR | Zbl
[4] O. V. Mazurin, S. M. Rekhson, Yu. K. Startsev, “O roli vyazkosti pri raschete relaksatsii svoistv stekla v intervale steklovaniya”, Fiz. khim. stekla, 1:5 (1975), 438–442
[5] O. S. Narayanaswamy, “A model of structural relaxation in glass”, J. Am. Ceram. Soc, 54:10 (1971), 491–498 | DOI
[6] O. V. Mazurin, V. P. Kluyev, S. V. Stolyar, “Temperature dependences of structural relaxation times at constant fictive temperatures in oxide glasses”, Glastech. Ber, 56:2 (1983), 1148–1153
[7] J. C. Mauro, D. C. Allan, M. Potuzak, “Nonequilibrium viscosity of glass”, Phys. Rev. B, 80:9 (2009), 094204 | DOI
[8] Yu. K. Startsev, “Nekotorye oblasti primeneniya stekol, ozhidayuschie issledovatelei (po materialam otkrytykh publikatsii)”, Steklo: nauka i praktika, GLASSP 2021, Sb. tez. Tretei Ros. konf. s mezhdunar. uchast., In-t khimii silikatov im. I.V. Grebenschikova RAN, 2021, 40–41
[9] A. J. Ellison, I. A. Cornejo, “Glass substrates for liquid crystal displays”, Int. J. Appl. Glass Sci, 1:1 (2010), 87–103 | DOI | MR
[10] Yu. K. Startsev, Stekla v displeyakh. Trebovaniya, osobennosti tekhnologii, modelirovanie svoistv, SPbGTI (TU), SPb, 2008, 134 pp.
[11] Q. Zheng, J. C. Mauro, “Variability in the relaxation behavior of glass: Impact of thermal history fluctuations and fragility”, J. Chem. Phys., 146:7 (2017), 074504 | DOI
[12] A. M. Butaev, Prochnost stekla. Ionoobmennoe uprochnenie, Makhachkala, 1997, 249 pp.
[13] A. K. Varshneya, “Chemical strengthening of glass: Lessons learned and yet to be learned”, Int. J. Appl. Glass Sci, 1:2 (2010), 131–142 | DOI
[14] Yu. K. Startsev, V. A. Bakhanov, M. Vostrikova, “S Issledovanie osobennostei relaksatsionnykh protsessov v ionoobmenennykh sloyakh promyshlennykh stekol”, Tez. dokl. III Chekhoslovatsko-Sovetsk. simp. po stroeniyu i svoistvam silikatnykh i oksidnykh sistem (Bratislava, 1986), 102–104
[15] O. V. Mazurin, Yu. K. Startsev, V. P. Klyuev, “O strukturnoi relaksatsii v ionoobmenennykh steklakh”, Tez. dokl. Vses. simp. «Relaksatsionnye yavleniya v neorga nicheskikh steklakh» (Tbilisi, 1984), 25–26
[16] Yu. K. Startsev, “Influence of structural relaxation on changes in properties of ion exchanged glasses” (New Delhi, 1986), XIVth Int. Congr. Glass., 363–369
[17] A. I. Fu, J. C. Mauro, “Mutual diffusivity, network dilation, and salt bath poisoning effects in ion-exchanged glass”, J. Non-Cryst. Solids, 363 (2013), 199–204 | DOI
[18] S. A. Chizhik, A. A. Sidel'nikov, “Kinetics of solid state reactions with a positive feedback between the reaction and fracture. 2. The kinetics of ion exchange in an alkaline-silicate glass”, Russ. Chem. Bull, 47:4 (1998), 610–614 | DOI
[19] S. A. Chizhik, A. A. Sidel'nikov, “Kinetics of the Na+ Li+ ion exchange in alkali silicate glass”, Glass Phys. Chem, 26:3 (2000), 280–286 | DOI
[20] S. A. Chizhik, A. A. Sidel'nikov, “The kinetics of solid state reactions accompanied by fracture: I. Reaction of ion exchange in lime-soda glass”, Solid State Ionics, 178:23-24 (2007), 1344–1352 | DOI | MR
[21] J. C. Mauro, A. J. Ellison, L. D. Pye, “Glass: The nanotechnology connection”, Int. J. Appl. Glass Sci, 4:2 (2013), 64–75 | DOI
[22] J. C. Mauro, A. Tandia, K. D. Vargheese, Y. Z. Mauro, M. M. Smedskjaer, “Accelerating the design of functional glasses through modeling”, Chem. Mater, 28:12 (2016), 4267–4277 | DOI
[23] J. C. Mauro, “Decoding the glass genome”, Curr. Opin. Solid State Mater. Sci, 22:2 (2018), 58–64 | DOI
[24] K. Tsujikawa, K. Tajima, J. Zhou, “Intrinsic loss of optical fibers”, Opt. Fiber Technol, 11:4 (2005), 319–331 | DOI
[25] J. C. Mauro, S. Soyer Uzun, W. Bras, S. Sen, “Nonmonotonic evolution of density fluctuations during glass relaxation”, Phys. Rev. Lett., 102 (2009), 155506 | DOI
[26] J. C. Mauro, “Effect of fragility on relaxation of density fluctuations in glass”, J. Non Cryst. Solids, 357:19-20 (2011), 3520–3543 | DOI
[27] M. Reiner, Reologiya, Nauka, M, 1965, 224 pp.
[28] O. V. Mazurin, Steklovanie, Nauka, L., 1986, 158 pp.
[29] D. K. Tagantsev, Stekloobraznye materialy, uchebnoe posobie, Izd-vo Poli tekhn. un-ta, SPb., 2010, 204 pp.
[30] A. Q. Tool, “Relation between inelastic deformability and thermal expansion of glass in its annealing range”, J. Am. Ceram. Soc, 29:9 (1946), 240–253 | DOI
[31] J. C. Mauro, Y. Yue, A. J. Ellison, P. K. Gupta, D. C. Allan, “Viscosity of glass-forming liquids”, Proc. Natl. Acad. Sci. U. S. A, 106:47 (2009), 19780–19784 | DOI
[32] H. N. Ritland, “Limitations of the fictive temperature concept”, J. Am. Ceram. Soc., 39:12 (1956), 403–406 | DOI
[33] J. C. Mauro, Y. Z. Mauro, “On the Prony series representation of stretched exponential relaxation”, Phys. A: Stat. Mech. Appl, 506 (2018), 75–87 | DOI | MR
[34] J. C. Phillips, “Kohlrausch explained: The solution to a problem that is 150 years old”, J. Stat. Phys, 77:3-4 (1994), 945–947 | DOI
[35] J. C. Phillips, “Stretched exponential relaxation in molecular and electronic glasses”, Rep. Prog. Phys, 59 (1996), 1133–1207 | DOI
[36] U. Fotheringham, R. Muller, K. Erb, A. Baltes, F. Siebers, E. Weiß, R. Dudek, “Evaluation of the calorimetric glass transition of glasses and glass ceramics with respect to structural relaxation and dimensional stability”, Thermochim. Acta, 461:1-2 (2007), 72–81 | DOI