Mots-clés : optimal value, convergence.
@article{UZKU_2023_165_3_a2,
author = {I. Ya. Zabotin and K. E. Kazaeva and O. N. Shul'gina},
title = {A cutting-plane method with internal iteration points for the general convex programming problem},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {208--218},
year = {2023},
volume = {165},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a2/}
}
TY - JOUR AU - I. Ya. Zabotin AU - K. E. Kazaeva AU - O. N. Shul'gina TI - A cutting-plane method with internal iteration points for the general convex programming problem JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2023 SP - 208 EP - 218 VL - 165 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a2/ LA - ru ID - UZKU_2023_165_3_a2 ER -
%0 Journal Article %A I. Ya. Zabotin %A K. E. Kazaeva %A O. N. Shul'gina %T A cutting-plane method with internal iteration points for the general convex programming problem %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2023 %P 208-218 %V 165 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a2/ %G ru %F UZKU_2023_165_3_a2
I. Ya. Zabotin; K. E. Kazaeva; O. N. Shul'gina. A cutting-plane method with internal iteration points for the general convex programming problem. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 3, pp. 208-218. http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a2/
[1] V. P. Bulatov, Metody pogruzheniya v zadachakh optimizatsii, Nauka, Novosibirsk, 1977, 161 pp.
[2] I. Ya. Zabotin, “O nekotorykh algoritmakh pogruzhenii-otsechenii dlya zadachi matematicheskogo programmirovaniya”, Izv. Irkut. gos. un-ta. Ser. Matem., 4:2 (2011), 91–101 | Zbl
[3] I. Ya. Zabotin, R. S. Yarullin, “Algoritm otsechenii s approksimatsiei nadgrafika”, Uchen. zap. Kazan. un-ta. Ser. Fiz. matem. nauki, 155, no. 4, 2013, 48–54 | MR | Zbl
[4] B. T. Polyak, Vvedenie v optimizatsiyu, Nauka, M., 1983, 384 pp. | MR
[5] I. Ya. Zabotin, R. S. Yarullin, “One approach to constructing cutting algorithms with dropping of cutting planes”, Russ. Math. (Izv. Vyssh. Uchebn. Zaved.), 57:3 (2013), 60–64 | DOI | MR | Zbl
[6] I. Ya. Zabotin, R. S. Yarullin, “A cutting-plane method without inclusions of approximating sets for conditional minimization”, Lobachevskii J. Math., 36:2 (2015), 132–138 | DOI | MR | Zbl
[7] I. Ya. Zabotin, R. S. Yarullin, “Cutting-plane method based on epigraph approximation with discarding the cutting planes”, Autom. Remote Control, 76:11 (2015), 1966–1975 | DOI | MR | Zbl
[8] V. F. Demyanov, L. V. Vasilev, Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981, 384 pp. | MR
[9] I. Zabotin, O. Shulgina, R. Yarullin, “A minimization algorithm with approximation of an epigraph of the objective function and a constaint set”, Proc. 9th Int. Conf. on Discrete Optimization and Operations Research and Scientific School, DOOR-SUP 2016 (Vladivostok, 2016), CEUR Workshop Proc., 1623, 2016, 321–324 | MR
[10] I.Y. Zabotin, O.N. Shul'gina, R. S. Yarullin, “A minimization method with approximation of feasible set and epigraph of objective function”, Russ. Math. (Izv. Vyssh. Uchebn. Zaved.), 60:11 (2016), 78–81 | DOI | Zbl
[11] O. N. Shulgina, R. S. Yarullin, I. Ya. Zabotin, “A cutting method with approximation of a constraint region and an epigraph for solving conditional minimization problems”, Lobachevskii J. Math., 39:6 (2018), 847–854 | DOI | MR | Zbl