Mots-clés : Klein–Gordon equation, implicit scheme.
@article{UZKU_2023_165_3_a1,
author = {R. Z. Dautov and G. R. Salimzyanova},
title = {A conservative fully discrete finite element scheme for the nonlinear {Klein{\textendash}Gordon} equation},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {190--207},
year = {2023},
volume = {165},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a1/}
}
TY - JOUR AU - R. Z. Dautov AU - G. R. Salimzyanova TI - A conservative fully discrete finite element scheme for the nonlinear Klein–Gordon equation JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2023 SP - 190 EP - 207 VL - 165 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a1/ LA - ru ID - UZKU_2023_165_3_a1 ER -
%0 Journal Article %A R. Z. Dautov %A G. R. Salimzyanova %T A conservative fully discrete finite element scheme for the nonlinear Klein–Gordon equation %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2023 %P 190-207 %V 165 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a1/ %G ru %F UZKU_2023_165_3_a1
R. Z. Dautov; G. R. Salimzyanova. A conservative fully discrete finite element scheme for the nonlinear Klein–Gordon equation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 3, pp. 190-207. http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a1/
[1] R. Dodd, Dzh. Eilbek, Dzh. Gibbon, Kh. M. Morris, Solitony i nelineinye volnovye uravneniya, Mir, M., 1988, 694 pp.
[2] O. M. Braun, Yu. S. Kivshar, Model Frenkelya-Kontorovoi: Kontseptsii, metody, prilozheniya, Fizmatlit, M., 2008, 519 pp.
[3] A. G. Bratsos, “A modified predictor-corrector scheme for the two-dimensional sine-Gordon equation”, Numer. Algorithms, 43:4 (2006), 295–308 | DOI | MR | Zbl
[4] A. G. Bratsos, “The solution of the two-dimensional sine-Gordon equation using the method of lines”, J. Comput. Appl. Math, 206:1 (2007), 251–277 | DOI | MR | Zbl
[5] W. Bao, X. Dong, “Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime”, Numer. Math., 120:2 (2012), 189–229 | DOI | MR | Zbl
[6] L. Wang, W. Chen, C. Wang, “An energy-conserving second order numerical scheme for nonlinear hyperbolic equation with an exponential nonlinear term”, J. Comput. Appl. Math, 280 (2015), 347–366 | DOI | MR | Zbl
[7] X. Kang, W. Feng, K. Cheng, C. Guo, “An efficient finite difference scheme for the 2d sine-Gordon equation”, J. Nonlinear Sci. Appl, 10:6 (2017), 2998–3012 | DOI | MR | Zbl
[8] J. Argyris, M. Haase, J. C. Heinrich, “Finite element approximation to two dimensional sine-Gordon solitons”, Comput. Methods Appl. Mech. Eng, 86:1 (1991), 1–26 | DOI | MR | Zbl
[9] Q. Wang, D. Cheng, “Numerical solution of damped nonlinear Klein-Gordon equations using variational method and finite element approach”, Appl. Math. Comput, 162:1 (2005), 381–401 | DOI | MR | Zbl
[10] Z. Asgari, S. M. Hosseini, “Numerical solution of two-dimensional sine-Gordon and MBE models using Fourier spectral and high order explicit time stepping methods”, Comput. Phys. Commun, 184:3 (2013), 565–572 | DOI | MR | Zbl
[11] R. Jiwari, S. Pandit, R. C. Mittal, “Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method”, Comput. Phys. Commun, 183:3 (2012), 600–616 | DOI | MR | Zbl
[12] M. Dehghan, A. Shokri, “Numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions”, Math. Comput. Simul, 79:3 (2008), 700–715 | DOI | MR | Zbl
[13] F. E. Browder, “On non-linear wave equations”, Math. Z., 80:3 (1962), 249–264 | DOI | MR | Zbl
[14] Zh. L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 587 pp.
[15] M. Dehghan, D. Mirzaei, “The boundary integral equation approach for numerical solution of the one-dimensional sine-Gordon equation”, Numer. Methods Partial Differ. Equations, 24:6 (2008), 1405–1415 | DOI | MR | Zbl
[16] K. Khan, M. A. Akbar, “Exact solutions of the (2+1)-dimensional cubic Klein-Gordon equation and the (3+1)-dimensional Zakharov-Kuznetsov equation using the modified simple equation method”, J. Assoc. Arab Univ. Basic Appl. Sci, 15:1 (2014), 74–81 | DOI | MR