A conservative fully discrete finite element scheme for the nonlinear Klein–Gordon equation
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 3, pp. 190-207

Voir la notice du chapitre de livre provenant de la source Math-Net.Ru

This article proposes a family of the Petrov–Galerkin–FEM methods that can be used to solve the nonlinear Klein–Gordon equation. The discrete schemes were formulated based on the solution of the problem and its time derivative. They ensure that the total energy is conserved at a discrete level. The simplest two-layer scheme was studied numerically. Based on the solution of the test problems with smooth solutions, it was shown that the scheme can determine the solution of the problem, as well as its time derivative with an error of the order of $O(h^2+\tau^2)$ in the continuous $L_2$ norm, where $\tau$ and $ h$ characterize the grid steps in time and space, respectively.
Keywords: Petrov–Galerkin method, finite element method
Mots-clés : Klein–Gordon equation, implicit scheme.
@article{UZKU_2023_165_3_a1,
     author = {R. Z. Dautov and G. R. Salimzyanova},
     title = {A conservative fully discrete finite element scheme for the nonlinear {Klein{\textendash}Gordon} equation},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {190--207},
     publisher = {mathdoc},
     volume = {165},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a1/}
}
TY  - JOUR
AU  - R. Z. Dautov
AU  - G. R. Salimzyanova
TI  - A conservative fully discrete finite element scheme for the nonlinear Klein–Gordon equation
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2023
SP  - 190
EP  - 207
VL  - 165
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a1/
LA  - ru
ID  - UZKU_2023_165_3_a1
ER  - 
%0 Journal Article
%A R. Z. Dautov
%A G. R. Salimzyanova
%T A conservative fully discrete finite element scheme for the nonlinear Klein–Gordon equation
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2023
%P 190-207
%V 165
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a1/
%G ru
%F UZKU_2023_165_3_a1
R. Z. Dautov; G. R. Salimzyanova. A conservative fully discrete finite element scheme for the nonlinear Klein–Gordon equation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 3, pp. 190-207. http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a1/