A conservative fully discrete finite element scheme for the nonlinear Klein–Gordon equation
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 3, pp. 190-207 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article proposes a family of the Petrov–Galerkin–FEM methods that can be used to solve the nonlinear Klein–Gordon equation. The discrete schemes were formulated based on the solution of the problem and its time derivative. They ensure that the total energy is conserved at a discrete level. The simplest two-layer scheme was studied numerically. Based on the solution of the test problems with smooth solutions, it was shown that the scheme can determine the solution of the problem, as well as its time derivative with an error of the order of $O(h^2+\tau^2)$ in the continuous $L_2$ norm, where $\tau$ and $ h$ characterize the grid steps in time and space, respectively.
Keywords: Petrov–Galerkin method, finite element method
Mots-clés : Klein–Gordon equation, implicit scheme.
@article{UZKU_2023_165_3_a1,
     author = {R. Z. Dautov and G. R. Salimzyanova},
     title = {A conservative fully discrete finite element scheme for the nonlinear {Klein{\textendash}Gordon} equation},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {190--207},
     year = {2023},
     volume = {165},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a1/}
}
TY  - JOUR
AU  - R. Z. Dautov
AU  - G. R. Salimzyanova
TI  - A conservative fully discrete finite element scheme for the nonlinear Klein–Gordon equation
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2023
SP  - 190
EP  - 207
VL  - 165
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a1/
LA  - ru
ID  - UZKU_2023_165_3_a1
ER  - 
%0 Journal Article
%A R. Z. Dautov
%A G. R. Salimzyanova
%T A conservative fully discrete finite element scheme for the nonlinear Klein–Gordon equation
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2023
%P 190-207
%V 165
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a1/
%G ru
%F UZKU_2023_165_3_a1
R. Z. Dautov; G. R. Salimzyanova. A conservative fully discrete finite element scheme for the nonlinear Klein–Gordon equation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 3, pp. 190-207. http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a1/

[1] R. Dodd, Dzh. Eilbek, Dzh. Gibbon, Kh. M. Morris, Solitony i nelineinye volnovye uravneniya, Mir, M., 1988, 694 pp.

[2] O. M. Braun, Yu. S. Kivshar, Model Frenkelya-Kontorovoi: Kontseptsii, metody, prilozheniya, Fizmatlit, M., 2008, 519 pp.

[3] A. G. Bratsos, “A modified predictor-corrector scheme for the two-dimensional sine-Gordon equation”, Numer. Algorithms, 43:4 (2006), 295–308 | DOI | MR | Zbl

[4] A. G. Bratsos, “The solution of the two-dimensional sine-Gordon equation using the method of lines”, J. Comput. Appl. Math, 206:1 (2007), 251–277 | DOI | MR | Zbl

[5] W. Bao, X. Dong, “Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime”, Numer. Math., 120:2 (2012), 189–229 | DOI | MR | Zbl

[6] L. Wang, W. Chen, C. Wang, “An energy-conserving second order numerical scheme for nonlinear hyperbolic equation with an exponential nonlinear term”, J. Comput. Appl. Math, 280 (2015), 347–366 | DOI | MR | Zbl

[7] X. Kang, W. Feng, K. Cheng, C. Guo, “An efficient finite difference scheme for the 2d sine-Gordon equation”, J. Nonlinear Sci. Appl, 10:6 (2017), 2998–3012 | DOI | MR | Zbl

[8] J. Argyris, M. Haase, J. C. Heinrich, “Finite element approximation to two dimensional sine-Gordon solitons”, Comput. Methods Appl. Mech. Eng, 86:1 (1991), 1–26 | DOI | MR | Zbl

[9] Q. Wang, D. Cheng, “Numerical solution of damped nonlinear Klein-Gordon equations using variational method and finite element approach”, Appl. Math. Comput, 162:1 (2005), 381–401 | DOI | MR | Zbl

[10] Z. Asgari, S. M. Hosseini, “Numerical solution of two-dimensional sine-Gordon and MBE models using Fourier spectral and high order explicit time stepping methods”, Comput. Phys. Commun, 184:3 (2013), 565–572 | DOI | MR | Zbl

[11] R. Jiwari, S. Pandit, R. C. Mittal, “Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method”, Comput. Phys. Commun, 183:3 (2012), 600–616 | DOI | MR | Zbl

[12] M. Dehghan, A. Shokri, “Numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions”, Math. Comput. Simul, 79:3 (2008), 700–715 | DOI | MR | Zbl

[13] F. E. Browder, “On non-linear wave equations”, Math. Z., 80:3 (1962), 249–264 | DOI | MR | Zbl

[14] Zh. L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 587 pp.

[15] M. Dehghan, D. Mirzaei, “The boundary integral equation approach for numerical solution of the one-dimensional sine-Gordon equation”, Numer. Methods Partial Differ. Equations, 24:6 (2008), 1405–1415 | DOI | MR | Zbl

[16] K. Khan, M. A. Akbar, “Exact solutions of the (2+1)-dimensional cubic Klein-Gordon equation and the (3+1)-dimensional Zakharov-Kuznetsov equation using the modified simple equation method”, J. Assoc. Arab Univ. Basic Appl. Sci, 15:1 (2014), 74–81 | DOI | MR