Solution of a scalar two-dimensional nonlinear diffraction problem for objects of arbitrary shape
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 2, pp. 167-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this study, the development, design, and software implementation of the methods for solving the nonlinear diffraction problem were performed. The influence of nonlinear medium defined by the Kerr law ${k^2}\left( x \right) = k_1^2 + \alpha {\left| {u\left( x \right)} \right|^2}$ on the propagation of a wave passing through an object was examined. The differential and integral formulations of the problem and the nonlinear integral equation were considered. The problem was solved for different bodies with the use of various computational grids. Convergence graphs of the iterative processes were generated. The obtained graphical results were presented. The explicit and implicit methods for solving the integral equation were compared.
Keywords: integral equation, scalar nonlinear diffraction problem, collocation method, iterative process, numerical method.
@article{UZKU_2023_165_2_a5,
     author = {A. O. Lapich and M. Yu. Medvedik},
     title = {Solution of a scalar two-dimensional nonlinear diffraction problem for objects of arbitrary shape},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {167--177},
     year = {2023},
     volume = {165},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a5/}
}
TY  - JOUR
AU  - A. O. Lapich
AU  - M. Yu. Medvedik
TI  - Solution of a scalar two-dimensional nonlinear diffraction problem for objects of arbitrary shape
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2023
SP  - 167
EP  - 177
VL  - 165
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a5/
LA  - ru
ID  - UZKU_2023_165_2_a5
ER  - 
%0 Journal Article
%A A. O. Lapich
%A M. Yu. Medvedik
%T Solution of a scalar two-dimensional nonlinear diffraction problem for objects of arbitrary shape
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2023
%P 167-177
%V 165
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a5/
%G ru
%F UZKU_2023_165_2_a5
A. O. Lapich; M. Yu. Medvedik. Solution of a scalar two-dimensional nonlinear diffraction problem for objects of arbitrary shape. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 2, pp. 167-177. http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a5/

[1] R. Kress, Linear Integral Equations, Applied Mathematical Sciences, 82, eds. John F., Marsden J.E., Sirovich L., Springer-Verlag, Berlin etc., 1989, xi+299 pp. | DOI | MR | Zbl

[2] Y. G. Smirnov, A. A. Tsupak, Diffraction of Acoustic and Electromagnetic Waves by Screens and Inhomogeneous Solids: Mathematical Theory, Ru-Science, M., 2023, 216 pp.

[3] A. S. Ilinskii, V. V. Kravtsov, A. G. Sveshnikov, Matematicheskie modeli elektrodinamiki, Vyssh. shk., M., 1991, 224 pp.

[4] M. L. Andreev, N. A. Zarkevich, A. N. Isakov, O. I. Kozyreva, I. V. Plokhov, “Razbie nie N-mernogo kuba na simpleksy s sokhraneniem simmetrii”, NTVP, 2011, no. 3, 21–24

[5] M. Yu. Medvedik, Yu. G. Smirnov, A. A. Tsupak, “The two-step method for determining a piecewise-continuous refractive index of a 2D scatterer by near field measurements”, Inverse Probl. Sci. Eng., 28:3 (2020), 427–447 | DOI | MR | Zbl

[6] M. Yu. Medvedik, Yu. G. Smirnov, A. A. Tsupak, “Non-iterative two-step method for solving scalar inverse 3D diffraction problem”, Inverse Probl. Sci. Eng., 28:10 (2020), 1474–1492 | DOI | MR | Zbl

[7] M. Yu. Medvedik, “A subhierarchic method for solving the Lippmann-Schwinger integral equation on bodies of complex shapes”, J. Commun. Technol. Electron., 57:2 (2012), 158–163 | DOI

[8] M. Y. Medvedik, “Solution of integral equations by the subhierarchic method for generalized computational grids”, Math. Models Comput. Simul., 7:6 (2015), 570–580 | DOI | MR

[9] Yu. G. Smirnov, D. A. Labutkina, “O reshenii nelineinogo integralnogo urav neniya Lippmana-Shvingera metodom szhimayuschikh otobrazhenii”, Izv. vyssh. uchebn. zaved. Povolzhsk. reg. Fiz. matem. nauki, 2023, no. 3, 3–10 | DOI

[10] Y. G. Smirnov, A. A. Tsupak, “Direct and inverse scalar scattering problems for the Helmholtz equation in $\Re_m$”, J. Inverse Ill-Posed Probl., 30:1 (2022), 101–116 | DOI | MR | Zbl