Mots-clés : convergence
@article{UZKU_2023_165_2_a3,
author = {I. Ya. Zabotin and O. N. Shulgina and R. S. Yarullin},
title = {A relaxed version of the cutting method with approximation of the constraint region},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {143--152},
year = {2023},
volume = {165},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a3/}
}
TY - JOUR AU - I. Ya. Zabotin AU - O. N. Shulgina AU - R. S. Yarullin TI - A relaxed version of the cutting method with approximation of the constraint region JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2023 SP - 143 EP - 152 VL - 165 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a3/ LA - ru ID - UZKU_2023_165_2_a3 ER -
%0 Journal Article %A I. Ya. Zabotin %A O. N. Shulgina %A R. S. Yarullin %T A relaxed version of the cutting method with approximation of the constraint region %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2023 %P 143-152 %V 165 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a3/ %G ru %F UZKU_2023_165_2_a3
I. Ya. Zabotin; O. N. Shulgina; R. S. Yarullin. A relaxed version of the cutting method with approximation of the constraint region. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 2, pp. 143-152. http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a3/
[1] V. P. Bulatov, Metody pogruzheniya v zadachakh optimizatsii, Nauka, Novosibirsk, 1977, 158 pp.
[2] V. P. Bulatov, O. V. Khamisov, “Metod otsecheniya v $E^{n+1}$ dlya resheniya zadach globalnoi optimizatsii na odnom klasse funktsii”, Zh. vychisl. matem. i matem. fiz., 47:11 (2007), 1830–1842 | MR
[3] V. F. Demyanov, L. V. Vasilev, Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981, 384 pp. | MR
[4] I. Ya. Zabotin, R. S. Yarullin, “Ob odnom podkhode k postroeniyu algoritmov otsechenii s otbrasyvaniem otsekayuschikh ploskostei”, Izv. vuzov. Matem., 2013, no. 3, 74–79 | Zbl
[5] I. Ya. Zabotin, R. S. Yarullin, “Metod otsechenii na osnove approksimatsii nadgrafika s otbrasyvaniem otsekayuschikh ploskostei”, Avtomat. i telemekh., 2015, no. 11, 76–88 | MR | Zbl
[6] Yu. E. Nesterov, Vvedenie v vypukluyu optimizatsiyu, MTsNMO, M., 2010, 278 pp.
[7] E. A. Nurminskii, “Metod otdelyayuschikh ploskostei s ogranichennoi pamyatyu dlya resheniya zadach vypukloi negladkoi optimizatsii”, Vych. met. programmirovanie, 7:1 (2006), 133–137
[8] V. A. Volkonskii, G. K. Eganyan, A. B. Pomanskii, “O mnozhestve effektivnykh tochek v lineinykh mnogokriterialnykh zadachakh”, Sib. matem. zhurn, 24:2 (1983), 9–17 | MR | Zbl
[9] B. T. Polyak, Vvedenie v optimizatsiyu, Nauka, M., 1983, 384 pp. | MR
[10] I. Ya. Zabotin, “O nekotorykh algoritmakh pogruzhenii-otsechenii dlya zadachi matematicheskogo programmirovaniya”, Izv. Irkutskogo gos. un-ta. Ser. Matem, 4:2 (2011), 91–101 | Zbl
[11] F. P. Vasilev, Metody optimizatsii, v. 1, MTsNMO, M., 2011, 624 pp.
[12] Ya. I. Zabotin, I. A. Fukin, “Ob odnoi modifikatsii metoda sdviga shtrafov dlya zadach nelineinogo programmirovaniya”, Izv. vuzov. Matem, 2000, no. 12, 49–54 | Zbl
[13] B. N. Pshenichnyi, Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 320 pp. | MR