A relaxed version of the cutting method with approximation of the constraint region
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 2, pp. 143-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A cutting method was proposed for solving the convex programming problem. The method assumes that the constraint region of the problem is embedded into some polyhedral sets for constructing iteration points. It involves the construction of a sequence of approximations that belongs to the admissible set and is relaxed, as well as implies that the $\varepsilon$-solution of the initial problem is fixed after a finite number of steps. The method also allows to obtain mixed convergent algorithms by using, if desired, any known or new relaxation algorithms for constructing the main iteration points.
Keywords: convex programming, sequence of approximation, relaxation, approximation, generalized support vector, subdifferential, cutting plane.
Mots-clés : convergence
@article{UZKU_2023_165_2_a3,
     author = {I. Ya. Zabotin and O. N. Shulgina and R. S. Yarullin},
     title = {A relaxed version of the cutting method with approximation of the constraint region},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {143--152},
     year = {2023},
     volume = {165},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a3/}
}
TY  - JOUR
AU  - I. Ya. Zabotin
AU  - O. N. Shulgina
AU  - R. S. Yarullin
TI  - A relaxed version of the cutting method with approximation of the constraint region
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2023
SP  - 143
EP  - 152
VL  - 165
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a3/
LA  - ru
ID  - UZKU_2023_165_2_a3
ER  - 
%0 Journal Article
%A I. Ya. Zabotin
%A O. N. Shulgina
%A R. S. Yarullin
%T A relaxed version of the cutting method with approximation of the constraint region
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2023
%P 143-152
%V 165
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a3/
%G ru
%F UZKU_2023_165_2_a3
I. Ya. Zabotin; O. N. Shulgina; R. S. Yarullin. A relaxed version of the cutting method with approximation of the constraint region. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 2, pp. 143-152. http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a3/

[1] V. P. Bulatov, Metody pogruzheniya v zadachakh optimizatsii, Nauka, Novosibirsk, 1977, 158 pp.

[2] V. P. Bulatov, O. V. Khamisov, “Metod otsecheniya v $E^{n+1}$ dlya resheniya zadach globalnoi optimizatsii na odnom klasse funktsii”, Zh. vychisl. matem. i matem. fiz., 47:11 (2007), 1830–1842 | MR

[3] V. F. Demyanov, L. V. Vasilev, Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981, 384 pp. | MR

[4] I. Ya. Zabotin, R. S. Yarullin, “Ob odnom podkhode k postroeniyu algoritmov otsechenii s otbrasyvaniem otsekayuschikh ploskostei”, Izv. vuzov. Matem., 2013, no. 3, 74–79 | Zbl

[5] I. Ya. Zabotin, R. S. Yarullin, “Metod otsechenii na osnove approksimatsii nadgrafika s otbrasyvaniem otsekayuschikh ploskostei”, Avtomat. i telemekh., 2015, no. 11, 76–88 | MR | Zbl

[6] Yu. E. Nesterov, Vvedenie v vypukluyu optimizatsiyu, MTsNMO, M., 2010, 278 pp.

[7] E. A. Nurminskii, “Metod otdelyayuschikh ploskostei s ogranichennoi pamyatyu dlya resheniya zadach vypukloi negladkoi optimizatsii”, Vych. met. programmirovanie, 7:1 (2006), 133–137

[8] V. A. Volkonskii, G. K. Eganyan, A. B. Pomanskii, “O mnozhestve effektivnykh tochek v lineinykh mnogokriterialnykh zadachakh”, Sib. matem. zhurn, 24:2 (1983), 9–17 | MR | Zbl

[9] B. T. Polyak, Vvedenie v optimizatsiyu, Nauka, M., 1983, 384 pp. | MR

[10] I. Ya. Zabotin, “O nekotorykh algoritmakh pogruzhenii-otsechenii dlya zadachi matematicheskogo programmirovaniya”, Izv. Irkutskogo gos. un-ta. Ser. Matem, 4:2 (2011), 91–101 | Zbl

[11] F. P. Vasilev, Metody optimizatsii, v. 1, MTsNMO, M., 2011, 624 pp.

[12] Ya. I. Zabotin, I. A. Fukin, “Ob odnoi modifikatsii metoda sdviga shtrafov dlya zadach nelineinogo programmirovaniya”, Izv. vuzov. Matem, 2000, no. 12, 49–54 | Zbl

[13] B. N. Pshenichnyi, Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 320 pp. | MR