Mots-clés : implicit scheme
@article{UZKU_2023_165_2_a1,
author = {R. Z. Dautov and M. V. Ivanova},
title = {A conservative finite element scheme for the {Kirchhoff} equation},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {115--131},
year = {2023},
volume = {165},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a1/}
}
TY - JOUR AU - R. Z. Dautov AU - M. V. Ivanova TI - A conservative finite element scheme for the Kirchhoff equation JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2023 SP - 115 EP - 131 VL - 165 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a1/ LA - ru ID - UZKU_2023_165_2_a1 ER -
%0 Journal Article %A R. Z. Dautov %A M. V. Ivanova %T A conservative finite element scheme for the Kirchhoff equation %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2023 %P 115-131 %V 165 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a1/ %G ru %F UZKU_2023_165_2_a1
R. Z. Dautov; M. V. Ivanova. A conservative finite element scheme for the Kirchhoff equation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 2, pp. 115-131. http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a1/
[1] G. Kirchhoff, Vorlesungenuber mathematische Physik, v. 1, Mechanik, B.G. Teubner, Leipzig, 1876, 466 pp.
[2] S. N. Bernshtein, “Novye prilozheniya pochti nezavisimykh velichin”, Izv. AN SSSR. Ser. matem., 4:2 (1940), 137–150 | Zbl
[3] S. I. Pohoz̆aev, “On a class of quasilinear hyperbolic equations”, Math. USSR-Sb., 25:1 (1975), 145–158 | DOI | MR
[4] S. I. Pokhozhaev, “Ob odnom kvazilineinom giperbolicheskom uravnenii Kirkhgofa”, Differents. uravneniya, 21:1 (1985), 101–108 | MR | Zbl
[5] J. L. Lions, “On some questions in boundary value problems of mathematical physics”, Contemporary developments in continuum mechanics and partial differential equations, North-Holland Mathematics Studies, 30, eds. De La Penha G.M., Medeiros L.A.J., North-Holl, Publ. Co., Amsterdam, 1978, 284–346 | DOI | MR | Zbl
[6] A. Arosio, S. Panizzi, “On the well-posedness of the Kirchhoff string”, Trans. Am. Math. Soc., 348:1 (1996), 305–330 | DOI | MR | Zbl
[7] A. Arosio, “Averaged evolution equations. The Kirchhoff string and its treatment in scales of Banach spaces”, Proc. 2nd Workshop on Functional-Analytic Methods in Complex Analysis and Applications to Partial Differential Equations, ICTP (Trieste, Jan. 25-29, 1993), eds. Tutschke W., Mshimba A., World Sci. Publ., River Edge, NJ, 1995, 220–254 | DOI | MR
[8] X. Lin, F. Li, “Global existence and decay estimates for nonlinear Kirchhoff-type equation with boundary dissipation”, Differ. Equations Appl., 5:2 (2013), 297–317 | DOI | MR | Zbl
[9] G. F. Carrier, “On the non-linear vibration problem of the elastic string”, Q. Appl. Math., 3:2 (1945), 157–165 | DOI | MR | Zbl
[10] A. T. Cousin, C. L. Frota, N. A. Lar'kin, L. A. Medeiros, “On the abstract model of the Kirchhoff-Carrier equation”, Commun. Appl. Anal., 1:3 (1997), 389–404 | MR | Zbl
[11] S. M.S. Cordeiro, D. C. Pereira, J. Ferreira, C. A. Raposo, “Global solutions and exponential decay to a Klein-Gordon equation of Kirchhoff-Carrier type with strong damping and nonlinear logarithmic source term”, Partial Differ. Equations Appl. Math., 3 (2021), 100018 | DOI
[12] V. V. Zaitsev, A. V. Nikulin, V. V. Nikulin, “Nelineinyi rezonans v strunnom EMR”, Vestn. SamGU. Estestvennonauchn. ser., 39:5 (2005), 125–130
[13] T. Gudi, “Finite element method for a nonlocal problem of Kirchhoff type”, SIAM J. Numer. Anal., 50:2 (2002), 657–668 | DOI | MR
[14] A. K. Dond, A. K. Pani, “A priori and a posteriori estimates of conforming and mixed FEM for a Kirchhoff equation of elliptic type”, Comput. Methods Appl. Math., 17:2 (2017), 217–236 | DOI | MR | Zbl
[15] V. Srivastava, S. Chaudhary, V. V.K. S. Kumar, B. Srinivasan, “Fully discrete finite element scheme for nonlocal parabolic problem involving the Dirichlet energy”, J. Appl. Math. Comput., 53:1–2 (2017), 413–443 | DOI | MR | Zbl
[16] S. Kundu, S. Chaudhary, A. Pani, M. Khebchareon, “Fully discrete finite element scheme for nonlocal parabolic problem involving the Dirichlet energy”, Numer. Funct. Anal. Optim., 22:37 (2016), 719–752 | DOI | MR
[17] S. Chaudhary, V. Srivastava, V. V.K. S. Kumar, “Finite element scheme with Crank-Nicolson method for parabolic nonlocal problems involving the Dirichlet energy”, Int. J. Comput. Methods., 14:5 (2017), 1750053 | DOI | MR | Zbl
[18] J. Peradze, “A numerical algorithm for the nonlinear Kirchhoff string equation”, Numer. Math., 102:2 (2005), 311–342 | DOI | MR | Zbl
[19] S. Bilbao, J. Smith, “Energy-conserving finite difference schemes for nonlinear strings”, Acta Acust. Acust., 91:2 (2005), 299–311
[20] D. Shi, Y. Wu, “Nonconforming quadrilateral finite element method for nonlinear Kirchhoff type equation with damping”, Math. Methods Appl. Sci., 43:5 (2020), 2558–2576 | DOI | MR | Zbl
[21] Zh. L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, per. s fr. L.R. Volevich, ed. O.A. Oleinik, Mir, M., 1972, 587 pp.