A conservative finite element scheme for the Kirchhoff equation
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 2, pp. 115-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article presents an implicit two-layer finite element scheme for solving the Kirchhoff equation, a nonlinear nonlocal equation of hyperbolic type with the Dirichlet integral. The discrete scheme was designed considering the solution of the problem and its derivative for the time variable. It ensures total energy conservation at a discrete level. The use of the Newton method was proven to be effective for solving the scheme on the time layer despite the nonlocality of the equation. The test problems with smooth solutions showed that the scheme can define both the solution of the problem and its time derivative with an error of $O(h^2+\tau^2)$ in the root-mean-square norm, where $\tau$ and $h$ are the grid steps in time and space, respectively.
Keywords: Kirchhoff equation, finite element method, Petrov–Galerkin method, Newton method.
Mots-clés : implicit scheme
@article{UZKU_2023_165_2_a1,
     author = {R. Z. Dautov and M. V. Ivanova},
     title = {A conservative finite element scheme for the {Kirchhoff} equation},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {115--131},
     year = {2023},
     volume = {165},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a1/}
}
TY  - JOUR
AU  - R. Z. Dautov
AU  - M. V. Ivanova
TI  - A conservative finite element scheme for the Kirchhoff equation
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2023
SP  - 115
EP  - 131
VL  - 165
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a1/
LA  - ru
ID  - UZKU_2023_165_2_a1
ER  - 
%0 Journal Article
%A R. Z. Dautov
%A M. V. Ivanova
%T A conservative finite element scheme for the Kirchhoff equation
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2023
%P 115-131
%V 165
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a1/
%G ru
%F UZKU_2023_165_2_a1
R. Z. Dautov; M. V. Ivanova. A conservative finite element scheme for the Kirchhoff equation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 2, pp. 115-131. http://geodesic.mathdoc.fr/item/UZKU_2023_165_2_a1/

[1] G. Kirchhoff, Vorlesungenuber mathematische Physik, v. 1, Mechanik, B.G. Teubner, Leipzig, 1876, 466 pp.

[2] S. N. Bernshtein, “Novye prilozheniya pochti nezavisimykh velichin”, Izv. AN SSSR. Ser. matem., 4:2 (1940), 137–150 | Zbl

[3] S. I. Pohoz̆aev, “On a class of quasilinear hyperbolic equations”, Math. USSR-Sb., 25:1 (1975), 145–158 | DOI | MR

[4] S. I. Pokhozhaev, “Ob odnom kvazilineinom giperbolicheskom uravnenii Kirkhgofa”, Differents. uravneniya, 21:1 (1985), 101–108 | MR | Zbl

[5] J. L. Lions, “On some questions in boundary value problems of mathematical physics”, Contemporary developments in continuum mechanics and partial differential equations, North-Holland Mathematics Studies, 30, eds. De La Penha G.M., Medeiros L.A.J., North-Holl, Publ. Co., Amsterdam, 1978, 284–346 | DOI | MR | Zbl

[6] A. Arosio, S. Panizzi, “On the well-posedness of the Kirchhoff string”, Trans. Am. Math. Soc., 348:1 (1996), 305–330 | DOI | MR | Zbl

[7] A. Arosio, “Averaged evolution equations. The Kirchhoff string and its treatment in scales of Banach spaces”, Proc. 2nd Workshop on Functional-Analytic Methods in Complex Analysis and Applications to Partial Differential Equations, ICTP (Trieste, Jan. 25-29, 1993), eds. Tutschke W., Mshimba A., World Sci. Publ., River Edge, NJ, 1995, 220–254 | DOI | MR

[8] X. Lin, F. Li, “Global existence and decay estimates for nonlinear Kirchhoff-type equation with boundary dissipation”, Differ. Equations Appl., 5:2 (2013), 297–317 | DOI | MR | Zbl

[9] G. F. Carrier, “On the non-linear vibration problem of the elastic string”, Q. Appl. Math., 3:2 (1945), 157–165 | DOI | MR | Zbl

[10] A. T. Cousin, C. L. Frota, N. A. Lar'kin, L. A. Medeiros, “On the abstract model of the Kirchhoff-Carrier equation”, Commun. Appl. Anal., 1:3 (1997), 389–404 | MR | Zbl

[11] S. M.S. Cordeiro, D. C. Pereira, J. Ferreira, C. A. Raposo, “Global solutions and exponential decay to a Klein-Gordon equation of Kirchhoff-Carrier type with strong damping and nonlinear logarithmic source term”, Partial Differ. Equations Appl. Math., 3 (2021), 100018 | DOI

[12] V. V. Zaitsev, A. V. Nikulin, V. V. Nikulin, “Nelineinyi rezonans v strunnom EMR”, Vestn. SamGU. Estestvennonauchn. ser., 39:5 (2005), 125–130

[13] T. Gudi, “Finite element method for a nonlocal problem of Kirchhoff type”, SIAM J. Numer. Anal., 50:2 (2002), 657–668 | DOI | MR

[14] A. K. Dond, A. K. Pani, “A priori and a posteriori estimates of conforming and mixed FEM for a Kirchhoff equation of elliptic type”, Comput. Methods Appl. Math., 17:2 (2017), 217–236 | DOI | MR | Zbl

[15] V. Srivastava, S. Chaudhary, V. V.K. S. Kumar, B. Srinivasan, “Fully discrete finite element scheme for nonlocal parabolic problem involving the Dirichlet energy”, J. Appl. Math. Comput., 53:1–2 (2017), 413–443 | DOI | MR | Zbl

[16] S. Kundu, S. Chaudhary, A. Pani, M. Khebchareon, “Fully discrete finite element scheme for nonlocal parabolic problem involving the Dirichlet energy”, Numer. Funct. Anal. Optim., 22:37 (2016), 719–752 | DOI | MR

[17] S. Chaudhary, V. Srivastava, V. V.K. S. Kumar, “Finite element scheme with Crank-Nicolson method for parabolic nonlocal problems involving the Dirichlet energy”, Int. J. Comput. Methods., 14:5 (2017), 1750053 | DOI | MR | Zbl

[18] J. Peradze, “A numerical algorithm for the nonlinear Kirchhoff string equation”, Numer. Math., 102:2 (2005), 311–342 | DOI | MR | Zbl

[19] S. Bilbao, J. Smith, “Energy-conserving finite difference schemes for nonlinear strings”, Acta Acust. Acust., 91:2 (2005), 299–311

[20] D. Shi, Y. Wu, “Nonconforming quadrilateral finite element method for nonlinear Kirchhoff type equation with damping”, Math. Methods Appl. Sci., 43:5 (2020), 2558–2576 | DOI | MR | Zbl

[21] Zh. L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, per. s fr. L.R. Volevich, ed. O.A. Oleinik, Mir, M., 1972, 587 pp.