Mots-clés : phase transitions, core-shell particles.
@article{UZKU_2023_165_1_a5,
author = {I. V. Tsivilsky and A. S. Melnikov and A. Kh. Gilmutdinov},
title = {Multiscale modeling of powder materials processing for additive manufacturing in inductively coupled plasma},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {82--100},
year = {2023},
volume = {165},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a5/}
}
TY - JOUR AU - I. V. Tsivilsky AU - A. S. Melnikov AU - A. Kh. Gilmutdinov TI - Multiscale modeling of powder materials processing for additive manufacturing in inductively coupled plasma JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2023 SP - 82 EP - 100 VL - 165 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a5/ LA - ru ID - UZKU_2023_165_1_a5 ER -
%0 Journal Article %A I. V. Tsivilsky %A A. S. Melnikov %A A. Kh. Gilmutdinov %T Multiscale modeling of powder materials processing for additive manufacturing in inductively coupled plasma %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2023 %P 82-100 %V 165 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a5/ %G ru %F UZKU_2023_165_1_a5
I. V. Tsivilsky; A. S. Melnikov; A. Kh. Gilmutdinov. Multiscale modeling of powder materials processing for additive manufacturing in inductively coupled plasma. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 1, pp. 82-100. http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a5/
[1] M. I. Boulos, “The inductively coupled R.F. (radio frequency) plasma”, Pure Appl. Chem, 57:9 (1985), 1321–1352 | DOI
[2] M. I. Boulos, R. Gagne, R. M. Barnes, “Effect of swirl and confinement on the flow and temperature fields in an inductively coupled r.f. plasma”, Can. J. Chem. Eng, 58:3 (1980), 367–376 | DOI
[3] P. Proulx, J. Mostaghimi, M. I. Boulos, “Plasma-particle interaction effects in induction plasma modeling under dense loading conditions”, Int. J. Heat Mass Transfer, 28:7 (1985), 1327–1336 | DOI
[4] D. Bernardi, V. Colombo, E. Ghedini, A. Mentrelli, “Three-dimensional modeling of inductively coupled plasma torches”, Pure Appl. Chem, 77:2 (2005), 359–372 | DOI
[5] M. Aghaei, A. Bogaerts, “Particle transport through an inductively coupled plasma torch: Elemental droplet evaporation”, J. Anal. At. Spectrom, 31:3 (2015), 631–641 | DOI
[6] C. M. Benson, S. F. Gimelshein, D. A. Levin, A. Montaser, “Simulation of droplet heating and desolvation in an inductively coupled plasma — Part I”, Spectrochim. Acta, Part B, 56:7 (2001), 1097–1112 | DOI
[7] A. Yu. Shemakhin, V. S. Zheltukhin, “Mathematical modelling of RF plasma flow at low pressures with 3d electromagnetic field”, Adv. Mater. Sci. Eng., 2019 (2019), 7120217 | DOI | MR
[8] I. I. Fairushin, “Analiticheskii raschet sostava termicheskoi pylevoi plazmy s metallicheskimi chastitsami”, Khimiya vysokikh energii, 54:6 (2020), 497–500 | DOI
[9] “Sect. 16.4: Mixture Model Theory”, ANSYS FLUENT 12.0 Theory Guide, Ch. 16: Multiphase Flows, ANSYS, Inc., Canonsburg, PA, 2009 www.afs.enea.it/project/neptunius/docs/fluent/html/th/node308.htm
[10] D. D. Gray, A. Giorgini, “The validity of the Boussinesq approximation for liquids and gases”, Int. J. Heat Mass Transfer, 19:5 (1976), 545–551 | DOI | Zbl
[11] Z. Luo, Y. Zhao, “A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion Additive Manufacturing”, Addit. Manuf, 21 (2018), 318–332 | DOI
[12] I. V. Tsivilskiy, A. Kh. Gilmutdinov, S. A. Nikiforov, R. S. Rublya, B. A. Khamidullin, A. S. Melnikov, K. Yu. Nagulin, “An experimentally verified three-dimensional non stationary fluid model of unloaded atmospheric pressure inductively coupled plasmas”, J. Phys. D: Appl. Phys., 53:45 (2020), 455203 | DOI