Multiscale modeling of powder materials processing for additive manufacturing in inductively coupled plasma
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 1, pp. 82-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article analyzes the approaches to macro- and mesoscale computational modeling of the dynamics of metal powder particles motion in the condensation chamber of a plasma reactor, spheroidization, coagulation, and phase transitions in particles. The features of different regimes of vaporization and condensation were described. The influence of phenomena such as Brownian motion and thermophoresis on the process was explored. The parameters of the process at which the formation of core-shell particles occurs were determined. The model can be used to optimize and select the effective regimes for the processing and synthesis of powder materials in inductively coupled plasma.
Keywords: computational modeling, powder materials, inductively coupled plasma, spheroidization
Mots-clés : phase transitions, core-shell particles.
@article{UZKU_2023_165_1_a5,
     author = {I. V. Tsivilsky and A. S. Melnikov and A. Kh. Gilmutdinov},
     title = {Multiscale modeling of powder materials processing for additive manufacturing in inductively coupled plasma},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {82--100},
     year = {2023},
     volume = {165},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a5/}
}
TY  - JOUR
AU  - I. V. Tsivilsky
AU  - A. S. Melnikov
AU  - A. Kh. Gilmutdinov
TI  - Multiscale modeling of powder materials processing for additive manufacturing in inductively coupled plasma
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2023
SP  - 82
EP  - 100
VL  - 165
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a5/
LA  - ru
ID  - UZKU_2023_165_1_a5
ER  - 
%0 Journal Article
%A I. V. Tsivilsky
%A A. S. Melnikov
%A A. Kh. Gilmutdinov
%T Multiscale modeling of powder materials processing for additive manufacturing in inductively coupled plasma
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2023
%P 82-100
%V 165
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a5/
%G ru
%F UZKU_2023_165_1_a5
I. V. Tsivilsky; A. S. Melnikov; A. Kh. Gilmutdinov. Multiscale modeling of powder materials processing for additive manufacturing in inductively coupled plasma. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 1, pp. 82-100. http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a5/

[1] M. I. Boulos, “The inductively coupled R.F. (radio frequency) plasma”, Pure Appl. Chem, 57:9 (1985), 1321–1352 | DOI

[2] M. I. Boulos, R. Gagne, R. M. Barnes, “Effect of swirl and confinement on the flow and temperature fields in an inductively coupled r.f. plasma”, Can. J. Chem. Eng, 58:3 (1980), 367–376 | DOI

[3] P. Proulx, J. Mostaghimi, M. I. Boulos, “Plasma-particle interaction effects in induction plasma modeling under dense loading conditions”, Int. J. Heat Mass Transfer, 28:7 (1985), 1327–1336 | DOI

[4] D. Bernardi, V. Colombo, E. Ghedini, A. Mentrelli, “Three-dimensional modeling of inductively coupled plasma torches”, Pure Appl. Chem, 77:2 (2005), 359–372 | DOI

[5] M. Aghaei, A. Bogaerts, “Particle transport through an inductively coupled plasma torch: Elemental droplet evaporation”, J. Anal. At. Spectrom, 31:3 (2015), 631–641 | DOI

[6] C. M. Benson, S. F. Gimelshein, D. A. Levin, A. Montaser, “Simulation of droplet heating and desolvation in an inductively coupled plasma — Part I”, Spectrochim. Acta, Part B, 56:7 (2001), 1097–1112 | DOI

[7] A. Yu. Shemakhin, V. S. Zheltukhin, “Mathematical modelling of RF plasma flow at low pressures with 3d electromagnetic field”, Adv. Mater. Sci. Eng., 2019 (2019), 7120217 | DOI | MR

[8] I. I. Fairushin, “Analiticheskii raschet sostava termicheskoi pylevoi plazmy s metallicheskimi chastitsami”, Khimiya vysokikh energii, 54:6 (2020), 497–500 | DOI

[9] “Sect. 16.4: Mixture Model Theory”, ANSYS FLUENT 12.0 Theory Guide, Ch. 16: Multiphase Flows, ANSYS, Inc., Canonsburg, PA, 2009 www.afs.enea.it/project/neptunius/docs/fluent/html/th/node308.htm

[10] D. D. Gray, A. Giorgini, “The validity of the Boussinesq approximation for liquids and gases”, Int. J. Heat Mass Transfer, 19:5 (1976), 545–551 | DOI | Zbl

[11] Z. Luo, Y. Zhao, “A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion Additive Manufacturing”, Addit. Manuf, 21 (2018), 318–332 | DOI

[12] I. V. Tsivilskiy, A. Kh. Gilmutdinov, S. A. Nikiforov, R. S. Rublya, B. A. Khamidullin, A. S. Melnikov, K. Yu. Nagulin, “An experimentally verified three-dimensional non stationary fluid model of unloaded atmospheric pressure inductively coupled plasmas”, J. Phys. D: Appl. Phys., 53:45 (2020), 455203 | DOI