Fourier method in the space of $\phi_{B}$-distributions
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 1, pp. 68-81
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In our previous articles, we introduced and explored the notion of $\phi_{B}$-distributions with values in the Banach space. This offers a new perspective on the theory of solvability of linear problems, which is important for solving partial differential equations, especially equations with deviating arguments. Here, we provide an overview of the theory of such distributions, propose a new approach to justify the use of the Fourier method for solving linear problems, and write out a correctly solvable problem for a system of partial differential equations with deviating arguments.
Keywords: differential equation, Fourier method, $\phi_{B}$-distribution
Mots-clés : $(\phi,Y,A,X)$-solution.
@article{UZKU_2023_165_1_a4,
     author = {V. S. Mokeichev and A. M. Sidorov},
     title = {Fourier method in the space of $\phi_{B}$-distributions},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {68--81},
     year = {2023},
     volume = {165},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a4/}
}
TY  - JOUR
AU  - V. S. Mokeichev
AU  - A. M. Sidorov
TI  - Fourier method in the space of $\phi_{B}$-distributions
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2023
SP  - 68
EP  - 81
VL  - 165
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a4/
LA  - ru
ID  - UZKU_2023_165_1_a4
ER  - 
%0 Journal Article
%A V. S. Mokeichev
%A A. M. Sidorov
%T Fourier method in the space of $\phi_{B}$-distributions
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2023
%P 68-81
%V 165
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a4/
%G ru
%F UZKU_2023_165_1_a4
V. S. Mokeichev; A. M. Sidorov. Fourier method in the space of $\phi_{B}$-distributions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 1, pp. 68-81. http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a4/

[1] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, 5-e izd., Nauka, M., 1988, 512 pp. | MR

[2] S. G. Mikhlin, Kurs matematicheskoi fiziki, 2-e izd., Lan, SPb., 2002, 576 pp. | MR

[3] S. L. Sobolev, Uravneniya matematicheskoi fiziki, 4-e izd., Nauka, M., 1966, 444 pp. | MR

[4] L. Shvarts, Matematicheskie metody dlya fizicheskikh nauk, Mir, M., 1965, 412 pp.

[5] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980, 496 pp. | MR

[6] V. S. Mokeichev, A. V. Mokeichev, “Novyi podkhod k teorii lineinykh zadach dlya sistem differentsialnykh uravnenii v chastnykh proizvodnykh I”, Izv. vuzov. Matem., 1999, no. 1, 25–35 | Zbl

[7] A. A. Bukhshtab, Teoriya chisel, ed. E.K. Vikulina, Prosveschenie, M., 1966, 384 pp. | MR

[8] V. S. Mokeichev, “Prostranstvo, elementy kotorogo i tolko oni razlagayutsya v ryady Fure po zadannoi sisteme elementov”, Evraziiskoe nauchnoe ob'edinenie, 1:10 (2016), 24–31

[9] V. S. Mokeichev, “Metricheskie, banakhovy, gilbertovy prostranstva $\phi$-raspredelenii”, Izv. vuzov. Matem., 2018, no. 5, 64–70 | Zbl

[10] V. S. Mokeichev, A. M. Sidorov, “Dynamical processes in the space of $\phi$-distributions”, Mesh Methods for Boundary-Value Problems and Applications, 13th International Conference (Kazan, Russia, October 20-25, 2020), Lecture Notes in Computational Science and Engineering, 141, eds. Badriev I.B., Banderov V., Lapin S.A., Springer, Cham, 2022, 325–334 | DOI

[11] V. S. Mokeichev, Differentsialnye uravneniya s otklonyayuschimisya argumentami, Izd-vo Kazan. un-ta, Kazan, 1985, 226 pp.

[12] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967, 624 pp. | MR