@article{UZKU_2023_165_1_a3,
author = {Yu. V. Klochkov and A. P. Nikolaev and O. V. Vakhnina and T. A. Sobolevskaya and A. Sh. Dzhabrailov and M. Yu. Klochkov},
title = {Varying parameterization of an ellipsoidal thin shell with {FEM-based} implementation},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {49--67},
year = {2023},
volume = {165},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a3/}
}
TY - JOUR AU - Yu. V. Klochkov AU - A. P. Nikolaev AU - O. V. Vakhnina AU - T. A. Sobolevskaya AU - A. Sh. Dzhabrailov AU - M. Yu. Klochkov TI - Varying parameterization of an ellipsoidal thin shell with FEM-based implementation JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2023 SP - 49 EP - 67 VL - 165 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a3/ LA - ru ID - UZKU_2023_165_1_a3 ER -
%0 Journal Article %A Yu. V. Klochkov %A A. P. Nikolaev %A O. V. Vakhnina %A T. A. Sobolevskaya %A A. Sh. Dzhabrailov %A M. Yu. Klochkov %T Varying parameterization of an ellipsoidal thin shell with FEM-based implementation %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2023 %P 49-67 %V 165 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a3/ %G ru %F UZKU_2023_165_1_a3
Yu. V. Klochkov; A. P. Nikolaev; O. V. Vakhnina; T. A. Sobolevskaya; A. Sh. Dzhabrailov; M. Yu. Klochkov. Varying parameterization of an ellipsoidal thin shell with FEM-based implementation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 1, pp. 49-67. http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a3/
[1] V. V. Novozhilov, Teoriya tonkikh obolochek, Izd-vo S. Peterb. un-ta, SPb, 1951, 334 pp. | MR
[2] R. B. Rikards, Metod konechnykh elementov v teorii obolochek i plastin, Znnatne, Riga, 1988, 283 pp. | MR
[3] C. A. Kabrits, E. I. Mikhailovskii, P. E. Tovstik, K. F. Chernykh, V. A. Shamina, Obschaya nelineinaya teoriya uprugikh obolochek, Izd-vo S. Peterb. un-ta, SPb, 2002, 388 pp.
[4] V. V. Pikul, Mekhanika obolochek, Dalnauka, Vladivostok, 2009, 535 pp.
[5] E. A. Storozhuk, V. A. Maksimyuk, I. S. Chernyshenko, “Nonlinear elastic state of a composite cylindrical shell with a rectangular hole”, Int. Appl. Mech, 55:5 (2019), 504–514 | DOI | MR | Zbl
[6] Yu. V. Klochkov, A. P. Nikolaev, O. V. Vakhnina, “Calculation of rotation shells using finite triangular elements with Lagrange multipliers in variative approximation of displacements”, J. Mach. Manuf. Reliab, 45:1 (2016), 51–58 | DOI
[7] I. B. Badriev, V. N. Paimushin, “Refined models of contact interaction of a thin plate with positioned on both sides deformable foundations”, Lobachevskii J. Math., 38:5 (2017), 779–793 | DOI | MR | Zbl
[8] M. N. Ubaydulloev, M. N. Serazutdinov, “Simulation and calculation of stress-strain state of thin-walled structures strengthened under load”, Proceedings of the 7th International Conference on Industrial Engineering, ICIE 2021, v. 1, Lecture Notes in Mechanical Engineering, eds. Radionov A.A., Gasiyarov V.R., Springer, Cham, 2022, 332–340 | DOI
[9] S. N. Yakupov, H. G. Kiyamov, N. M. Yakupov, “Modeling a synthesized element of complex geometry based upon three-dimensional and two-dimensional finite elements”, Lobachevskii J. Math, 42:9 (2021), 2263–2271 | DOI | Zbl
[10] Yu. V. Klochkov, A. P. Nikolaev, O. V. Vakhnina, “Finite element analysis of shells of revolution using triangular discretization elements with corrective Lagrange multipliers”, Moscow Univ. Mech. Bull, 71:5 (2016), 114–117 | DOI | Zbl
[11] E. A. Storozhuk, V. A. Maksimyuk, A. V. Yatsura, “Stress-strain state near a hole in a shear compliant composite cylindrical shell with elliptical cross-section”, Int. Appl. Mech, 54:5 (2018), 559–567 | DOI | MR | Zbl
[12] A. I. Golovanov, “Numerical Modeling of large elastoplastic strains in terms of principal stretches. I. Kinematics of elastoplastic strains”, Russ. Aeronaut, 53:2 (2010), 161–166 | DOI
[13] L. U. Sultanov, “Analysis of finite elasto-plastic strains: Integration algorithm and numerical examples”, Lobachevskii J. Math, 39:9 (2018), 1478–1483 | DOI | MR | Zbl
[14] A. K. Jebur, E. O. Hassoun, H. A. Abrahem, F. S. Khayrullin, O. M. Sakhbiev, “Shell stress analysis using a variational method based on three-dimensional functions with finite carriers”, J. Appl. Eng. Sci, 18:1 (2020), 110–113 | DOI
[15] R. Kayumov, A. Sulejmanov, D. Strakhov, “Model of degradation of composite materials of building structure's load-bearing elements”, Proceedings of STCCE 2021: Selected Papers, Lecture Notes in Civil Engineering, 169, ed. Vatin N., Springer, Cham, 2021, 239–249 | DOI
[16] M. Sartorato, R. de Medeiros, V. Tita, “A finite element formulation for smart piezollectric composite shells: Mathematical formulation, computational analysis and experimental evaluation”, Compos. Struct, 127 (2015), 185–198 | DOI
[17] L. Shiqiang, L. Guoxing, W. Zhihua, Z. Longmao, W. Guiying, “Finite element simulation of metallic cylindrical sandwich shells with graded aluminum tabular cores subjected to internal blast loading”, Int. J. Mech. Sci, 96-97 (2015), 1–12 | DOI
[18] X. He, “Finite element analysis of torsional free vibration of adhesively bonded single-lap joints”, Int. J. Adhes. Adhes., 48 (2014), 59–66 | DOI
[19] N. Nguyen, A. M. Waas, “Nonlinear, finite deformation, finite element analysise”, Z. Angew. Math. Phys., 67:9 (2016), 35 | DOI | MR | Zbl
[20] S. L. Paznanova, G. P. Vasilev, P. S. Dineva, G. D. Manolis, “Dynamic analysis of nano heterogeneities in a finite-sized solid by boundary and finite element methods”, Int. J. Solids Struct, 80 (2016), 1–18 | DOI
[21] Z. Lei, F. Gillot, L. Jezeguel, “Developments of the mixed grid isogeometric Reissner-Mindlin shell: Serendipity basis and modified reduced quadrature”, Eur. J. Mech. A/Solids, 54 (2015), 105–119 | DOI | MR | Zbl
[22] P. Hanslo, M. G. Larson, F. Larson, “Tangential differential calculus and the finite element modeling of a large deformation elastic membrane problem”, Comput. Mech., 56:1 (2015), 87–95 | DOI | MR
[23] H. Yamashita, A. I. Valkeap?a?a, P. Jayakumar, H. Syqiyama, “Continuum mechanics based bilinear shear deformable shell element using absolute nodal coordinate formulation”, J. Comput. Nonlinear Dyn., 10:5 (2015), 051012 | DOI
[24] H. Ren, “Fast and robust full-guadrature triangular elements for thin plates/shells with large deformations and large rotations”, J. Comput. Nonlinear Dyn., 10:5 (2015), 051018 | DOI
[25] H. Chi, C. Talischi, O. Lopez-Pamies, G. H. Paulino, “A paradigm for higher-order polygonal elements in finite elasticity using a gradient correction scheme”, Comput. Methods Appl. Mech. Eng., 306 (2016), 216–251 | DOI | MR | Zbl
[26] J. E. Bishop, “A displacement-based finite element formulation for general polyhedra using harmonic shape functions”, Int. J. Numer. Methods Eng, 97:1 (2014), 1–31 | DOI | MR | Zbl
[27] C. Talischi, A. Pereira, I. F.M. Menezes, G. H. Paulino, “Gradient correction for polygonal and polyhedral finite elements”, Int. J. Numer. Methods Eng, 102:3-4 (2015), 728–747 | DOI | MR | Zbl
[28] G. Manzini, A. Russo, N. Sukumar, “New perspective on polygonal and polyhedral finite element method”, Math. Models Methods Appl. Sci, 24:8 (2014), 1665–1699 | DOI | MR | Zbl
[29] A. L. Gain, C. Talischi, G. H. Paulino, “On the Virtual Element Method for three dimensional linear elasticity problems on arbitrary polyhedral meshes”, Comput. Methods Appl. Mech. Eng, 282 (2014), 132–160 | DOI | MR | Zbl
[30] L. Beirão da Veiga, C. Lovadina, D. Mora, “A Virtual Element Method for elastic and inelastic problems on polytope meshes”, Comput. Methods Appl. Mech. Eng, 295 (2015), 327–346 | DOI | MR | Zbl
[31] P. F. Antonietti, V. L. Beirão, S. Scacchi, M. Verani, “A $C^1$ virtual element method for the Cahn-Hilliard equation with polygonal meshes”, SIAM J. Numer. Anal., 54:1 (2016), 34–56 | DOI | MR | Zbl
[32] Yu. V. Klochkov, A. P. Nikolaev, O. V. Vakhnina, T. A. Kiseleva, “Using Lagrange multipliers in the triangular element of a nonshallow shell under variable interpolation of displacements”, J. Appl. Ind. Math, 11:4 (2017), 535–544 | DOI | MR | Zbl
[33] A. V. Pogorelov, Differentsialnaya geometriya, Nauka, M., 1974, 177 pp.
[34] L. I. Sedov, Mekhanika sploshnoi sredy, Nauka, M., 1976, 503 pp. | MR
[35] Yu. V. Klochkov, A. P. Nikolaev, O. V. Vakhnina, M. Yu. Klochkov, “Finit element model of pipeline discretization by prismatic elements”, IOP Conf. Ser.: Mater. Sci. Eng., 698:6 (2019), 066012 | DOI
[36] Yu. V. Klochkov, A. P. Nikolaev, S. D. Fomin, O. V. Vakhnina, T. A. Sobolevskaya, M. Yu. Klochkov, “A finite elemental algorithm for calculating the arbitrarily loaded shell using three-dimensional finite elements”, ARPN J. Eng. Appl. Sci, 15:13 (2020), 1472–1481
[37] G. Zucco, R. M.J. Groh, A. Madeo, P. M. Weaver, “Mixed shell element for static and buckling analysis of variable angle tow composite plates”, Compos. Struct, 152 (2016), 324–338 | DOI