Endomorphisms of the Toeplitz algebra
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 1, pp. 35-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article describes all injective endomorphisms of the classical Toeplitz algebra. Their connection with endomorphisms of the algebra of continuous functions on the unit circle and with coverings over the unit circle was considered. It was shown that each non-unitary isometry $V$ in the Toeplitz algebra determines the identity preserving endomorphism, as well as the class of its compact perturbations, i.e., identity non-preserving endomorphisms, defined by partial isometries $\{VP\}$, where $P$ is a projection of finite codimension. The notions of $\mathcal{T}$-equivalence of endomorphisms and $\mathcal{T}$-equivalence up to a compact perturbation were introduced. An example was provided wherein the isometries are unitarily equivalent but the corresponding endomorphisms fall into different equivalence classes. Of all endomorphisms, the ones belonging to the class of Blaschke endomorphisms, which are analogous to endomorphisms of the disc-algebra and generate unbranched coverings over the unit circle, were singled out.
Keywords: $C^{*}$-algebra, Toeplitz algebra, finite Blaschke product, Fredholm operator, partial isometry.
Mots-clés : endomorphism, automorphism
@article{UZKU_2023_165_1_a2,
     author = {S. A. Grigoryan and A. Yu. Kuznetsova},
     title = {Endomorphisms of the {Toeplitz} algebra},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {35--48},
     year = {2023},
     volume = {165},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a2/}
}
TY  - JOUR
AU  - S. A. Grigoryan
AU  - A. Yu. Kuznetsova
TI  - Endomorphisms of the Toeplitz algebra
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2023
SP  - 35
EP  - 48
VL  - 165
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a2/
LA  - ru
ID  - UZKU_2023_165_1_a2
ER  - 
%0 Journal Article
%A S. A. Grigoryan
%A A. Yu. Kuznetsova
%T Endomorphisms of the Toeplitz algebra
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2023
%P 35-48
%V 165
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a2/
%G ru
%F UZKU_2023_165_1_a2
S. A. Grigoryan; A. Yu. Kuznetsova. Endomorphisms of the Toeplitz algebra. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 1, pp. 35-48. http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a2/

[1] L. A. Coburn, “The $C^*$-algebra generated by an isometry I”, Bull. Am. Math. Soc, 73:5 (1967), 722–726 | DOI | MR | Zbl

[2] E. R. van Kampen, “On almost periodic functions of constant absolute value”, J. London Math. Soc, 12:1 (1937), 3–6 | DOI | Zbl

[3] L. S. Pontryagin, Nepreryvnye gruppy, Matematika v monografiyakh. Osnovnaya seriya, III, eds. S.N. Bernshtein, I.M. Vinogradov, A.N. Kolmogorov, L.A. Lyusternik, A.I. Plesner, V.A. Tartakovskii, N.I. Chebotarev, GONTI NKTP SSSR, M.–L., 1938, 316 pp. | MR

[4] Murphy G. J., $C^*$-Algebras and Operator Theory, Acad. Press, 1990, 296 pp. | DOI | MR | Zbl

[5] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Graduate Texts in Mathematics, 2nd ed., Springer, N.Y., 1998, xvi+198 pp. | DOI | MR | Zbl

[6] T. A. Grigoryan, A. Yu. Kuznetsova, “Blaschke $C^*$-algebras”, Lobachevskii J. Math., 41:4 (2020), 631–636 | DOI | MR | Zbl

[7] P. R. Halmos, L. J. Wallen, “Powers of partial isometries”, J. Math. Mech, 19:8 (1970), 657–663 | MR | Zbl

[8] A. an Huef, I. Raeburn, I. Tolich, “Structure theorems for star-commuting power partial isometries”, Linear Algebra Its Appl., 481 (2015), 107–114 | DOI | MR | Zbl

[9] R. V. Kadison, J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, v. I, Graduate Studies in Mathematics, 15, Elementary theory, Am. Math. Soc., 1997, 398 pp. | MR | Zbl