Influence of different delays on mixed types of oscillations under limited excitation
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 1, pp. 16-34
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This review summarizes the findings of some published studies that have explored the influence of various delays (elasticity, damping, and self-oscillatory mechanism of excitation) on the dynamics of classes (or types) of mixed oscillations (MO) without and with consideration of the interaction between the oscillating system and the energy source. A general holistic framework was provided for how such delays, both separately and in combination, affect the dynamics of MOs. A unified computational scheme (model) used in the works studied made it easy to understand and compare the results of this influence on different types of MOs. With the account of the interaction with the energy source, the known calculation scheme (or model) of a mechanical frictional self-oscillating system serves as a unified basis for considering all types of MOs. Nonlinear differential equations of motion valid for all types of MOs with their respective solutions were presented, from which the relations for any certain type of MO are derived as special cases. Equations of unsteady motion and relations to calculate the amplitude and phase of stationary oscillations, the velocity of the energy source and the load of the oscillating system on it, as well as the stability conditions of stationary oscillations were given. The results of the calculations carried out to gain insight into the influence of delays on the system dynamics were discussed. Overall, the calculations show that the interaction between the forces with delay and the forces in the energy source is at the core of a variety of phenomena. Different delays in the same system change the shape of the amplitude-frequency curves, shift them, and influence the stability of motion.
Mots-clés : oscillation type
Keywords: mixed oscillations, self-oscillations, energy source, delay, damping, elasticity, nonlinearity, method, direct linearization.
@article{UZKU_2023_165_1_a1,
     author = {A. A. Alifov},
     title = {Influence of different delays on mixed types of oscillations under limited excitation},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {16--34},
     year = {2023},
     volume = {165},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a1/}
}
TY  - JOUR
AU  - A. A. Alifov
TI  - Influence of different delays on mixed types of oscillations under limited excitation
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2023
SP  - 16
EP  - 34
VL  - 165
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a1/
LA  - ru
ID  - UZKU_2023_165_1_a1
ER  - 
%0 Journal Article
%A A. A. Alifov
%T Influence of different delays on mixed types of oscillations under limited excitation
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2023
%P 16-34
%V 165
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a1/
%G ru
%F UZKU_2023_165_1_a1
A. A. Alifov. Influence of different delays on mixed types of oscillations under limited excitation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 1, pp. 16-34. http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a1/

[1] V. O. Kononenko, Vibrating Systems with a Limited Power-Supply, ed. Gladwell G.M.L., Iliffe, London, 1969, 236 pp.

[2] A. A. Alifov, K. V. Frolov, Interaction of Nonlinear Oscillatory Systems with Energy Sources, ed. E. Rivin, Hemisphere Publ. Corp., New York–Washington–Philadelphia–London, 1990, 327 pp.

[3] T. S. Krasnopolskaya, A. Yu. Shvets, Regulyarnaya i khaoticheskaya dinamika sistem s ogranichennym vozbuzhdeniem, NITs «Regulyarnaya i khaoticheskaya dinamika», In-t kompyut. issled., Izhevsk, 2008, 280 pp.

[4] V. K. Astashev, V. I. Babitskii, B. A. Borovkov, “Vliyanie massy korpusa na dinamiku mashin vibroudarnogo deistviya s ogranichennym vozbuzhdeniem”, Mashinovedenie, 1977, no. 5, 30–34

[5] R. F. Ganiev, T. S. Krasnopolskaya, “The scientific heritage of V.O.Kononenko: The Sommerfeld-Kononenko effect”, J. Mach. Manuf. Reliab., 47:5 (2018), 389–398 | DOI

[6] L. Püst, “Electro-mechanical impact system excited by a source of limited power”, Eng. Mech., 15:6 (2008), 391–400

[7] J. M. Balthazar, “Vibrating systems with limited power supply: An emergent topic after Prof. Kononenko”, Proc. 5th Int. Conf. on Nonlinear Dynamics (Kharkiv, 2016), 16–22

[8] K. Bissembayev, Z. Iskakov, “Nonlinear vibrations of orthogonal mechanism of shaking table”, Int. J. Appl. Mech. Eng, 19:3 (2014), 487–501 | DOI

[9] D. A. Kovriguine, “Synchronization and Sommerfeld effect as typical resonant patterns”, Arch. Appl. Mech, 82 (2012), 591–604 | DOI | Zbl

[10] A. K. Samantaray, S. S. Dasgupta, R. Bhattacharyya, “Sommerfeld effect in rotationally symmetric planar dynamical systems”, Int. J. Eng. Sci, 48:1 (2010), 21–36 | DOI

[11] L. Cveticanin, M. Zukovic, D. Cveticanin, “Non-ideal source and energy harvesting”, Acta Mech, 228 (2017), 3369–3379 | DOI | MR | Zbl

[12] V.M. Osetskii (red.), Prikladnaya mekhanika, uchebnoe posobie dlya vuzov, 2-e izd., pererab. i dop., Mashinostroenie, M., 1977, 488 pp.

[13] V. P. Rubanik, Kolebaniya kvazilineinykh sistem s zapazdyvaniem, Nauka, M., 1969, 288 pp.

[14] S. A. Kaschenko, “Dinamika logisticheskogo uravneniya s zapazdyvaniem i diffuziei i s bystro ostsilliruyuschimi po prostranstvennoi peremennoi koeffitsientami”, Dokl. Akademii nauk, 482:5 (2018), 508–512 | DOI | Zbl

[15] M. V. Mulyukov, “Ustoichivost lineinogo avtonomnogo ostsillyatora s zapazdyvayuschei obratnoi svyazyu”, Vest. Perm. un-ta. Mekhanika. Inform., 3 (2015), 5–11

[16] V. K. Astashev, M. E. Gerts, “Avtokolebaniya vyazko-uprugogo sterzhnya s ogranichitelyami pri deistvii zapazdyvayuschei sily”, Mashinovedenie, 5 (1973), 3–11

[17] B. M. Zhirnov, “Odnochastotnye rezonansnye kolebaniya friktsionnoi avtokolebatelnoi sistemy s zapazdyvaniem pri vneshnem vozmuschenii”, Prikl. mekhanika, 14:9 (1978), 102–109 | Zbl

[18] V. Z. Tkhan, Yu. N. Dementev, V. I. Goncharov, “Povyshenie tochnosti rascheta sistem avtomaticheskogo upravleniya s zapazdyvaniem”, Programmnye produkty i sistemy, 31:3 (2018), 521–526 | DOI

[19] I. A. Garkina, A. M. Danilov, V. V. Nashivochnikov, “Imitatsionnoe modelirovanie dinamicheskikh sistem s zapazdyvaniem”, Sovrem. probl. nauki i obrazovaniya, 2015, no. 1-1, 1–7

[20] A. Daza, A. Wagemakers, M. A.F. Sanjuán, “Wada property in systems with delay”, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 220–226 | DOI | MR | Zbl

[21] T. V. Tretyakova, V. E. Vildeman, Prostranstvenno-vremennaya neodnorodnost pro tsessov neuprugogo deformirovaniya metallov, Fizmatlit, M., 2016, 120 pp.

[22] B. M. Zhirnov, “Ob avtokolebaniyakh mekhanicheskoi sistemy s dvumya stepenyami svobody pri nalichii zapazdyvaniya”, Prikl. mekhanika, 9:10 (1973), 83–87

[23] A. A. Alifov, M. G. Farzaliev, “About the calculation by the method of linearization of oscillations in a system with time lag and limited power-supply”, CSDEIS 2019: Advances in Intelligent Systems, Computer Science and Digital Economics, Advances in Intelligent Systems and Computing, 1127, eds. Hu Z., Petoukhov S., He M., Springer, Cham, 2020, 404–413 | DOI

[24] A. A. Alifov, “On mixed forced and self-oscillations with delays in elasticity and friction”, ACSDEIS 2020: Advances in Intelligent Systems, Computer Science and Digital Economics II, Advances in Intelligent Systems and Computing, 1402, eds. Hu Z., Petoukhov S., He M., Springer, Cham, 2021, 1–9 | DOI

[25] A. A. Alifov, M. G. Farzaliev, “O raschete metodom linearizatsii vzaimodeistviya parametricheskikh i avtokolebanii pri zapazdyvanii i ogranichennom vozbuzhdenii”, Vest. Tomsk. gos. un-ta. Matem. i mekhanika, 2020, no. 68, 41–52 | DOI | MR

[26] A. A. Alifov, M. E. Mazurov, “The influence of delays in elasticity and damping on auto parametric oscillations”, Mach. Sci, 10:1 (2021), 43–50

[27] A. A. Alifov, “Autoparametric oscillations with delays in elastic and frictional forces”, J. Mach. Manuf. Reliab., 50:2 (2021), 98–104 | DOI

[28] A. A. Alifov, “O smeshannykh vynuzhdennykh, parametricheskikh i avtokolebaniyakh pri ogranichennom vozbuzhdenii i zapazdyvayuschei uprugosti”, Vest. Perm. nats. issled. politekhn. un-ta. Mekhanika, 2020, no. 3, 12–19 | DOI

[29] A. A. Alifov, “Self-oscillations in delay and limited power of the energy source”, Mech. Solids, 54:4 (2019), 607–613 | DOI | MR

[30] A. A. Alifov, “Smeshannye vynuzhdennye, parametricheskie i avtokolebaniya pri neidealnom istochnike energii i zapazdyvayuschikh silakh”, Izv. vuzov. PND, 29:5 (2021), 739–750 | DOI | MR

[31] A. A. Andronov, A. A. Vitt, S. E. Khaikin, Teoriya kolebanii, Nauka, M., 1981, 568 pp. | MR

[32] D. M. Klimov, “Ob odnom vide avtokolebanii v sisteme s sukhim treniem”, Izv. RAN. Mekhanika tverdogo tela, 2003, no. 3, 6–12

[33] M. A. Bronovets, V. F. Zhuravlev, “Ob avtokolebaniyakh v sistemakh izmereniya sil treniya”, Izv. RAN. Mekhanika tverdogo tela, 2012, no. 3, 3–11

[34] A. A. Alifov, Metody pryamoi linearizatsii dlya rascheta nelineinykh sistem, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2015, 74 pp.

[35] A. A. Alifov, “O raschete kolebatelnykh sistem s ogranichennym vozbuzhdeniem metodami pryamoi linearizatsii”, Probl. mashinostr. i avtomatiz., 2017, no. 4, 92–97

[36] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974, 504 pp. | MR

[37] Vibratsii v tekhnike, Spravochnik. V 6-ti t., ed. V.N. Chelomei (red.), Mashinostroenie, M., 1979, 351 pp.