Voir la notice du chapitre de livre
@article{UZKU_2023_165_1_a0,
author = {M. F. Ablayev and F. M. Ablayev and A. V. Vasiliev},
title = {Analysis of the amplitude form of the quantum hash function},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {5--15},
year = {2023},
volume = {165},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a0/}
}
TY - JOUR AU - M. F. Ablayev AU - F. M. Ablayev AU - A. V. Vasiliev TI - Analysis of the amplitude form of the quantum hash function JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2023 SP - 5 EP - 15 VL - 165 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a0/ LA - ru ID - UZKU_2023_165_1_a0 ER -
%0 Journal Article %A M. F. Ablayev %A F. M. Ablayev %A A. V. Vasiliev %T Analysis of the amplitude form of the quantum hash function %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2023 %P 5-15 %V 165 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a0/ %G ru %F UZKU_2023_165_1_a0
M. F. Ablayev; F. M. Ablayev; A. V. Vasiliev. Analysis of the amplitude form of the quantum hash function. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 1, pp. 5-15. http://geodesic.mathdoc.fr/item/UZKU_2023_165_1_a0/
[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”, SIAM J. Comput, 26:5 (1997), 1484–1509 | DOI | MR | Zbl
[2] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, 2010, 702 pp. | DOI | MR | Zbl
[3] D. J. Bernstein, “Introduction to post-quantum cryptography”, Post-Quantum Cryptography, eds. Bernstein D.J., Buchmann J., Dahmen E., Springer, Berlin–Heidelberg, 2009, 1–14 | DOI | MR | Zbl
[4] F. M. Ablayev, A. V. Vasiliev, “Cryptographic quantum hashing”, Laser Phys. Lett., 11:2 (2014), 025202 | DOI | MR
[5] F. Ablayev, A. Vasiliev, “Computing Boolean functions via quantum hashing”, Computing with New Resources, Essays Dedicated to Jozef Gruska on the Occasion of His 80th Birthday, Lecture Notes in Computer Science, 8808, eds. Calude C., Freivalds R., Kazuo I., Springer, Cham, 2014, 149–160 | DOI | MR | Zbl
[6] F. Ablayev, M. Ablayev, “Quantum hashing via ouniversal hashing constructions and Freivalds' fingerprinting schemas”, Descriptional Complexity of Formal Systems, Lecture Notes in Computer Science, 8614, eds. Jürgensen H., Karhumäki J., Okhotin A., Springer, Cham, 2014, 42–52 | DOI | MR | Zbl
[7] F. Ablayev, M. Ablayev, A. Vasiliev, “On the balanced quantum hashing”, J. Phys.: Conf. Ser., 681 (2016), 012019 | DOI | MR
[8] A. Vasiliev, “Quantum hashing for finite abelian groups”, Lobachevskii J. Math., 37:6 (2016), 753–757 | DOI | MR | Zbl
[9] F. M. Ablayev, M. F. Ablayev, A. V. Vasiliev, M. T. Ziatdinov, “Quantum fingerprinting and quantum hashing. Computational and cryptographical aspects”, Balt. J. Mod. Comput., 4:4 (2016), 860–875 | DOI | MR
[10] D. Li, J. Zhang, F. Z. Guo, W. Huang, Q. Y. Wen, H. Chen, “Discrete-time interacting quantum walks and quantum Hash schemes”, Quantum Inf. Process, 12 (2013), 1501–1513 | DOI | MR | Zbl
[11] Y. G. Yang, P. Xu, R. Yang, Y. H. Zhou, W. M. Shi, “Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption”, Sci. Rep., 6 (2016), 19788 | DOI
[12] Y. G. Yang, J. L. Bi, X. B. Chen, Z. Yuan, Y. H. Zhou, W. M. Shi, “Simple hash function using discrete-time quantum walks”, Quantum Inf. Process., 17 (2018), 189 | DOI | MR | Zbl
[13] F. Ablayev, A. Vasiliev, “Algorithms for quantum branching programs based on fingerprinting”, Proc. Electron. Theor. Comput. Sci, 9 (2009), 1–11 | DOI | Zbl
[14] H. Buhrman, R. Cleve, J. Watrous, R. de Wolf, “Quantum fingerprinting”, Phys. Rev. Lett., 87:16 (2001), 167902 | DOI
[15] J. Naor, M. Naor, “Small-bias probability spaces: Efficient constructions and applications”, STOC'90: Proc. 22nd Annu. ACM Symp. on Theory of Computing, ed. Ortiz H., Assoc. Comput. Mach., New York, NY, 1990, 213–223 | DOI
[16] A. Ben-Aroya, A. Ta-Shma, “Constructing small-bias sets from algebraic-geometric codes”, FOCS'09: Proc. IEEE 50th Annu. Symp. on Foundations of Computer Science (Atlanta, GA, 2009), 191–197 | DOI | MR | Zbl
[17] S. Chen, C. Moore, A. Russell, “Small-bias sets for nonabelian groups”, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 16th International Workshop, APPROX 2013, and 17th International Workshop, RANDOM 2013, Proceedings (Berkeley, CA, USA, August 21-23, 2013), Lecture Notes in Computer Science, 8096, eds. Raghavendra P., Raskhodnikova S., Jansen K., Rolim J.D.P., Springer, Berlin–Heidelberg, 2013, 436–451 | DOI | MR | Zbl
[18] F. M. Ablaev, M. F. Ablaev, A. V. Vasilev, “Universalnoe kvantovoe kheshirovanie”, Uchen. zap. Kazan. un-ta. Ser. Fiz. matem. nauki, 156, no. 3, 2014, 7–18 | MR