@article{UZKU_2022_164_4_a0,
author = {N. F. Bilalova},
title = {The $d $-risk of {Bayesian} estimation for the probability of success in {Bernoulli} trials},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {271--284},
year = {2022},
volume = {164},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2022_164_4_a0/}
}
TY - JOUR AU - N. F. Bilalova TI - The $d $-risk of Bayesian estimation for the probability of success in Bernoulli trials JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2022 SP - 271 EP - 284 VL - 164 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2022_164_4_a0/ LA - ru ID - UZKU_2022_164_4_a0 ER -
%0 Journal Article %A N. F. Bilalova %T The $d $-risk of Bayesian estimation for the probability of success in Bernoulli trials %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2022 %P 271-284 %V 164 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2022_164_4_a0/ %G ru %F UZKU_2022_164_4_a0
N. F. Bilalova. The $d $-risk of Bayesian estimation for the probability of success in Bernoulli trials. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 164 (2022) no. 4, pp. 271-284. http://geodesic.mathdoc.fr/item/UZKU_2022_164_4_a0/
[1] DeGroot M.H., Optimal Statistical Decisions, McGraw-Hill, – N. Y., 1970, 489 pp. | MR | Zbl
[2] Gupta A.K., Nadaraiah S., Handbook of Beta Distribution and Its Applications, Marcel Dekker, N. Y., 2004, 571 pp. | MR | Zbl
[3] Lehmann E.L., Testing Statistical Hypotheses, Springer, Berlin, 1997, 625 pp. | MR | Zbl
[4] Lehmann E.L., Casella G., Theory of Point Estimation, Springer, N. Y.–Berlin–Heidelberg, 1998, 616 pp. | MR | Zbl
[5] Salimov R.F., Turilova E.A., Volodin I.N., “Sequential procedures for assessing the percentage of harmful impurities with the given limitations on the accuracy and reliability of statistical inference”, 16th Int. Multidiscip. Sci. GeoConf. SGEM SGEM Vienna GREEN Ext. Sci. Sess.: SGEM2016 Conf. Proc., Book 1, v. 4, 2016, 175–180 | DOI
[6] Salimov R.F., Turilova E.A., Volodin I.N., Yang S.-F., “Estimation of the mean value for the normal distribution with constraints on $d$-risk”, Lobachevskii J. Math., 39:3 (2018), 377–387 | DOI | MR | Zbl
[7] Salimov R.F., Volodin I.N., Nasibullina N.F., “Sequential $d$-guaranteed estimate of the normal mean with bounded relative error”, Uchenye Zapiski Kazanskogo Universiteta Seriya Fiziko-Matematicheskie Nauki, 161, no. 1, 2019, 145–151 | DOI | MR
[8] Salimov R.F., Volodin A.I., Volodin I.N., Yang S.-F., “Estimation of mean value a normal distribution with constraints on the relative error and $d$-risk”, J. Stat. Comput. Simul., 90:7 (2020), 1286–1300 | DOI | MR
[9] Simushkin S.V., “The empirical $d$-posterior approach to the problem of guaranteedness of statistical inference”, Sov. Math. (Izv. Vyssh. Uchebn. Zaved.), 27:11 (1983), 47–67 | MR
[10] Volodin I.N., Guaranteed procedures of statistical inference: Choosing the optimal sample size, Doct. Phys.-Math. Sci. Diss., Kazan, 1980, 239 pp. (In Russian)
[11] Volodin I.N., “Guaranteed statistical inference procedures (determination of the optimal sample size)”, J. Sov. Math., 44:5 (1989), 568–600 | DOI | MR | Zbl
[12] Volodin I.N., Simushkin S.V., “On the $d$-posterior approach to the problem of statistical inference”, Proc. 3rd Vilnius Int. Conf. on the Theory of Probability and Mathematical Statistics, Vilnius, 1981, 100–101 (In Russian)