About the causes of the bearing capacity loss of a composite beam under three-point bending
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 164 (2022) no. 2, pp. 221-243 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article considers the results of an experimental and numerical study of the three-point bending problems of a composite specimen (beam). The numerical analysis of the beam behavior, in a physically and geometrically nonlinear statement of the problem, assumed that the beam is made by layering a unidirectional carbon fiber along the specimen axis. The Tsai–Wu criterion was used to determine the ultimate load at which the composite phases of the specimen lose their strength. The comparative analysis of the specimen behavior at different values of the beam thickness and the diameter of the loading roller was carried out. The results obtained show that the failure of the short specimens occurs as the material loses its strength under the loading roller (in the middle), and the long specimens become delaminated along the adhesive layer. This effect is explained by the loss of stability of the adhesive layer in a non-classical transverse shear mode. Our study demonstrates that the roller diameter has practically no effect on the value of the ultimate load, while the load at which the layer buckles on the front surface of the specimen is very sensitive to changes in its value. A good correlation of the numerical results with the experimental data was revealed.
Mots-clés : composite
Keywords: geometric nonlinearity, physical nonlinearity, buckling, strength, adhesive layer, specimen.
@article{UZKU_2022_164_2_a5,
     author = {V. N. Paimushin and R. A. Kayumov and F. R. Shakirzyanov and S. A. Kholmogorov},
     title = {About the causes of the bearing capacity loss of a composite beam under three-point bending},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {221--243},
     year = {2022},
     volume = {164},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2022_164_2_a5/}
}
TY  - JOUR
AU  - V. N. Paimushin
AU  - R. A. Kayumov
AU  - F. R. Shakirzyanov
AU  - S. A. Kholmogorov
TI  - About the causes of the bearing capacity loss of a composite beam under three-point bending
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2022
SP  - 221
EP  - 243
VL  - 164
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2022_164_2_a5/
LA  - ru
ID  - UZKU_2022_164_2_a5
ER  - 
%0 Journal Article
%A V. N. Paimushin
%A R. A. Kayumov
%A F. R. Shakirzyanov
%A S. A. Kholmogorov
%T About the causes of the bearing capacity loss of a composite beam under three-point bending
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2022
%P 221-243
%V 164
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2022_164_2_a5/
%G ru
%F UZKU_2022_164_2_a5
V. N. Paimushin; R. A. Kayumov; F. R. Shakirzyanov; S. A. Kholmogorov. About the causes of the bearing capacity loss of a composite beam under three-point bending. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 164 (2022) no. 2, pp. 221-243. http://geodesic.mathdoc.fr/item/UZKU_2022_164_2_a5/

[1] Paimushin V. N., Kayumov R. A., Shakirzyanov F. R., Kholmogorov S. A., “On the specifics of behavior of the sandwich plate composite facing layers under local loading”, Vestn. Permsk. Nats. Issled. Politekh. Univ. Mekh., 2020, no. 4, 152–164 | DOI

[2] Paimushin V. N., Makarov M. V., Badriev I. B., Kholmogorov S. A., “Geometrically nonlinear strain and buckling analysis of sandwich plates and shells reinforced on their edge”, Shell Structures: Theory and Applications, v. 4, CRC Press, London, 2018, 267–270 | DOI

[3] Badriev I. B., Makarov M. V., Paimushin V. N., “Solvability of physically and geomentrically nonlinear problem of the theory of sandwich plates with transversally-soft core”, Russ. Math., 59:10 (2015), 57–60 | DOI | MR

[4] Thomsen O. T., “Theoretical and experimental investigation local bending effects in sandwich plates”, Compos. Struct., 30:1 (1995), 85–101 | DOI | MR

[5] Thomsen O. T., Rits W., Eaton D. C.G., Dupont O., Queekers P., “Ply drop-off effects in CFRP/honeycomb sandwich panels – experimental results”, Compos. Sci. Technol., 56:4 (1996), 423–431 | DOI

[6] Vahterova Y. A., Min Y. N., “Effect of shape of armoring fibers on strength of composite materials”, Turk. J. Comput. Math. Educ., 12:2 (2021), 2703–2708 | DOI

[7] Paimushin V. N., Kholmogorov S. A., Makarov M. V., Tarlakovskii D. V., Lukaszewicz A., “Mechanics of fiber composites: Forms of loss of stability and fracture of test specimens resulting from three-point bending tests”, Z. Angew. Math. Mech., 99:1 (2019), e201800063, 1–25 | DOI | MR

[8] Petras A., Sutcliffe M. P.F., “Failure mode maps for honeycomb sandwich panels”, Compos. Struct., 44:4 (2019), 237–252 | DOI

[9] Rupp P., Elsner P., Weidenmann K. A., “Failure mode maps for four-point-bending of hybrid sandwich structures with carbon fiber reinforced plastic face sheets and aluminum foam cores manufactured by a polyurethane spraying process”, J. Sandwich Struct. Mater., 8:21 (2019), 2654–2679 | DOI

[10] Shi H., Liu W., Fang H., “Damage characteristics analysis of GFRP-Balsa sandwich beams under four-point fatigue bending”, Compos. Part A: Appl. Sci. Manuf., 109 (2018), 564–577 | DOI

[11] Sokolinsky V. S., Shen H., Vaikhanski L., Nutt S. R., “Experimental and analytical study of nonlinear bending response of sandwich beams”, Compos. Struct., 60:2 (2003), 219–229 | DOI

[12] Banghai J., Zhibin L., Fangyun L., “Failure mechanisms of sandwich beams subjected to three-point bending”, Compos. Struct., 133 (2015), 739–745 | DOI

[13] Fathi A., Woff-Fabris F., Altstadt V., Gatzi R., “An investigation of the flexural properties of balsa and polymer foam core sandwich structures: influence of core type and contour finishing options”, J. Sandwich Struct. Mater., 15:5 (2013), 487–508 | DOI

[14] Crupi V., Epasto G., Guglielmino E., “Comparison of aluminium sandwiches for lightweight ship structures: honeycomb vs. foam”, Mar. Struct., 30 (2013), 74–96 | DOI

[15] Shi H., Liu W., Fang H., “Damage characteristics analysis of GFRP-Balsa sandwich beams under four-point fatigue bending”, Compos.: Part A, 109 (2018), 564–577 | DOI

[16] Alila F., Fajoui J., Gerard R., Casari P., Kchaou M., Jacquemin F., “Viscoelastic behaviour investigation and new developed laboratory slamming test on foam core sandwich”, J. Sandwich Struct. Mater., 22:6 (2020), 2049–2074 | DOI

[17] Piovar S., Kormanikova E., “Sandwich beam in four-point bending test: Experiment and numerical models”, Adv. Mater. Res., 969 (2014), 316–319 | DOI

[18] Russo A., Zuccarello B., “Experimental and numerical evaluation of the mechanical behaviour of GFRP sandwich panels”, Compos. Struct., 81:4 (2007), 575–586 | DOI

[19] Tarnopol'skii Yu.M., Kintsis T.Ya., Methods of Static Testing of Reinforced Plastics, Khimiya, M., 1975, 262 pp. (In Russian)

[20] Carbajal N., Mujika F., “Determination of compressive strength of unidirectional composites by three-point bending tests”, Polym. Test., 28:2 (2009), 150–156 | DOI

[21] Carbajal N., Mujika F., “Determination of longitudinal compressive strength of long fiber composites by three-point bending of $[0_m/9_0n/0_p]$ cross-ply laminated strips”, Polym. Test., 28:6 (2009), 618–626 | DOI

[22] Dufort L., Drapier S., Grediac M., “Closed-form solution for the cross-section warping in short beams under three-point bending”, Compos. Struct., 52:2 (2001), 233–246 | DOI

[23] Beldica C. E., Hilton H. H., “Nonlinear viscoelastic beam bending with piezoelectric control – analytical and computational simulations”, Compos. Struct., 51:2 (2001), 195–203 | DOI

[24] Rabotnov Yu.N., Shesterikov S. A., “Creep stability of columns and plates”, J. Mech. Phys. Solids, 6:1, 27–34 | DOI | MR

[25] Shesterikov S. A., “Criterion of stability of columns in creep”, Prikl. Mat. Mekh., 23:6 (1959), 1101–1106 (In Russian) | MR

[26] Kuznetsov A. P., Kurshin L. M., “Using the hardening theory to solve some problems with the stability of plates and shells in creep”, Prikl. Mekh. Tekh. Fiz., 1960, no. 4, 84–89 (In Russian)

[27] Shesterikov S. A., “Buckling under creep considering instantaneous plastic deformations”, Prikl. Mekh. Tekh. Fiz., 1963, no. 2, 124–129 (In Russian)

[28] Teregulov I. G., “Stability of plates and shells subject to unsteady creep”, Studies on the Theory of Plates and Shells, 3, Izd. Kazan. Univ., Kazan, 1965, 237–243 (In Russian)

[29] Pian T. H. H., “Creep buckling of curved beam under lateral loading”, Proc. 3rd U.S. Nat. Congr. Appl. Mech., Pergamon Press, N. Y., 1958, 649–654

[30] Dumansky A. M., Liu Hao, “Analysis of anisotropy of time-dependent and nonlinear properties of unidirectional CFRP”, IOP Conf. Ser.: Mater. Sci. Eng., 683 (2019), 012093, 1–7 | DOI

[31] Meng M., Le H.R., Rizvi M. J., Grove S. M., “3D FEA modeling of laminated composites in bending and their failure mechanisms”, Compos. Struct., 119 (2015), 693–708 | DOI

[32] Obraztsov I. F., Vasil'ev V.V., “Nonlinear phenomenological models of the deformation of fibrous composite materials”, Mech. Compos. Mater., 18:3 (1982), 259–262 | DOI

[33] Xie M., Adams D. F., “A plasticity model for unidirectional composite materials and its applications in modeling composites testing”, Compos. Sci. Technol., 54:1 (1995), 11–21 | DOI

[34] Lee M. S., Seo H. Y., Kang C. G., “Comparative study on mechanical properties of CR 340/CFRP composites through three point bending test by using theoretical and experimental methods”, Int. J. Precis. Eng. Manuf.-Green Techol., 3:4 (2016), 359–365 | DOI | MR

[35] Paimushin V. N., Kholmogorov S. A., Kaymov R. A., “Experimental investigation of residual strain formation mechanisms in composite laminates under cycling loading”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 4, 2017, 473–492 (In Russian)

[36] Mujika F., Pujana J., Olave M., “On the determination of out-of-plane elastic properties of honeycomb sandwich panels”, Polym. Test., 30:2 (2011), 222–228 | DOI

[37] Fedotenkov G. V., Tarlakovsky D. V., Vahterova Y. A., “Identification of non-stationary load upon Timoshenko beam”, Lobachevskii J. Math., 40:4 (2019), 439–447 | DOI | MR

[38] Grinevich A. V., Yakovlev N. O., Slavin A. V., “Criteria of the failure of polymer matrix composites (review)”, Tr. VIAM, 2019, no. 7 | DOI

[39] Narayanaswami R., Adelman H. M., “Evaluation of the Tensor Polynomial and Hoffman strength theories for composite materials”, J. Compos. Mater., 11:4 (1977), 366–377 | DOI

[40] Washizu K., Variational Methods in Elasticity and Plasticity, Mir, M., 1987, 542 pp. (In Russian)

[41] Bonet J., Wood D., Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge Univ. Press, 2008, xx+318 pp. | DOI | MR

[42] Zienkiewicz O. C., Taylor R. L., The Finite Element Method, v. 2, Solid Mechanics, Butterworth-Heinemann, Oxford, UK, 2000, 316 pp. | MR

[43] Golovanov A. I., Berezhnoi D. V., Finite-Element Method in Mechanics of Deformable Solids, DAS, Kazan, 2001, 301 pp. (In Russian)

[44] Riks E., “An incremental approach to the solution of snapping and buckling problems”, Int. J. Solids Struct., 15:7 (1979), 529–551 | DOI | MR

[45] Crisfield M. A., Non-linear finite element analysis of solids and structures: Essentials, John Wiley Sons, N. Y., 1991, 362 pp. | MR

[46] Crisfield M. A., “A fast incremental/iterative solution procedure that handles “snap-through””, Comput. Struct., 13:1–3 (1981), 55–62 | DOI

[47] Kayumov R. A., Lukankin S. A., Paimushin V. N., Kholmogorov S. A., “Identification of mechanical properties of fiber-reinforced composites”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157, no. 4, 2015, 112–132 (In Russian) | MR