Keywords: geometric nonlinearity, physical nonlinearity, buckling, strength, adhesive layer, specimen.
@article{UZKU_2022_164_2_a5,
author = {V. N. Paimushin and R. A. Kayumov and F. R. Shakirzyanov and S. A. Kholmogorov},
title = {About the causes of the bearing capacity loss of a composite beam under three-point bending},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {221--243},
year = {2022},
volume = {164},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2022_164_2_a5/}
}
TY - JOUR AU - V. N. Paimushin AU - R. A. Kayumov AU - F. R. Shakirzyanov AU - S. A. Kholmogorov TI - About the causes of the bearing capacity loss of a composite beam under three-point bending JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2022 SP - 221 EP - 243 VL - 164 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2022_164_2_a5/ LA - ru ID - UZKU_2022_164_2_a5 ER -
%0 Journal Article %A V. N. Paimushin %A R. A. Kayumov %A F. R. Shakirzyanov %A S. A. Kholmogorov %T About the causes of the bearing capacity loss of a composite beam under three-point bending %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2022 %P 221-243 %V 164 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2022_164_2_a5/ %G ru %F UZKU_2022_164_2_a5
V. N. Paimushin; R. A. Kayumov; F. R. Shakirzyanov; S. A. Kholmogorov. About the causes of the bearing capacity loss of a composite beam under three-point bending. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 164 (2022) no. 2, pp. 221-243. http://geodesic.mathdoc.fr/item/UZKU_2022_164_2_a5/
[1] Paimushin V. N., Kayumov R. A., Shakirzyanov F. R., Kholmogorov S. A., “On the specifics of behavior of the sandwich plate composite facing layers under local loading”, Vestn. Permsk. Nats. Issled. Politekh. Univ. Mekh., 2020, no. 4, 152–164 | DOI
[2] Paimushin V. N., Makarov M. V., Badriev I. B., Kholmogorov S. A., “Geometrically nonlinear strain and buckling analysis of sandwich plates and shells reinforced on their edge”, Shell Structures: Theory and Applications, v. 4, CRC Press, London, 2018, 267–270 | DOI
[3] Badriev I. B., Makarov M. V., Paimushin V. N., “Solvability of physically and geomentrically nonlinear problem of the theory of sandwich plates with transversally-soft core”, Russ. Math., 59:10 (2015), 57–60 | DOI | MR
[4] Thomsen O. T., “Theoretical and experimental investigation local bending effects in sandwich plates”, Compos. Struct., 30:1 (1995), 85–101 | DOI | MR
[5] Thomsen O. T., Rits W., Eaton D. C.G., Dupont O., Queekers P., “Ply drop-off effects in CFRP/honeycomb sandwich panels – experimental results”, Compos. Sci. Technol., 56:4 (1996), 423–431 | DOI
[6] Vahterova Y. A., Min Y. N., “Effect of shape of armoring fibers on strength of composite materials”, Turk. J. Comput. Math. Educ., 12:2 (2021), 2703–2708 | DOI
[7] Paimushin V. N., Kholmogorov S. A., Makarov M. V., Tarlakovskii D. V., Lukaszewicz A., “Mechanics of fiber composites: Forms of loss of stability and fracture of test specimens resulting from three-point bending tests”, Z. Angew. Math. Mech., 99:1 (2019), e201800063, 1–25 | DOI | MR
[8] Petras A., Sutcliffe M. P.F., “Failure mode maps for honeycomb sandwich panels”, Compos. Struct., 44:4 (2019), 237–252 | DOI
[9] Rupp P., Elsner P., Weidenmann K. A., “Failure mode maps for four-point-bending of hybrid sandwich structures with carbon fiber reinforced plastic face sheets and aluminum foam cores manufactured by a polyurethane spraying process”, J. Sandwich Struct. Mater., 8:21 (2019), 2654–2679 | DOI
[10] Shi H., Liu W., Fang H., “Damage characteristics analysis of GFRP-Balsa sandwich beams under four-point fatigue bending”, Compos. Part A: Appl. Sci. Manuf., 109 (2018), 564–577 | DOI
[11] Sokolinsky V. S., Shen H., Vaikhanski L., Nutt S. R., “Experimental and analytical study of nonlinear bending response of sandwich beams”, Compos. Struct., 60:2 (2003), 219–229 | DOI
[12] Banghai J., Zhibin L., Fangyun L., “Failure mechanisms of sandwich beams subjected to three-point bending”, Compos. Struct., 133 (2015), 739–745 | DOI
[13] Fathi A., Woff-Fabris F., Altstadt V., Gatzi R., “An investigation of the flexural properties of balsa and polymer foam core sandwich structures: influence of core type and contour finishing options”, J. Sandwich Struct. Mater., 15:5 (2013), 487–508 | DOI
[14] Crupi V., Epasto G., Guglielmino E., “Comparison of aluminium sandwiches for lightweight ship structures: honeycomb vs. foam”, Mar. Struct., 30 (2013), 74–96 | DOI
[15] Shi H., Liu W., Fang H., “Damage characteristics analysis of GFRP-Balsa sandwich beams under four-point fatigue bending”, Compos.: Part A, 109 (2018), 564–577 | DOI
[16] Alila F., Fajoui J., Gerard R., Casari P., Kchaou M., Jacquemin F., “Viscoelastic behaviour investigation and new developed laboratory slamming test on foam core sandwich”, J. Sandwich Struct. Mater., 22:6 (2020), 2049–2074 | DOI
[17] Piovar S., Kormanikova E., “Sandwich beam in four-point bending test: Experiment and numerical models”, Adv. Mater. Res., 969 (2014), 316–319 | DOI
[18] Russo A., Zuccarello B., “Experimental and numerical evaluation of the mechanical behaviour of GFRP sandwich panels”, Compos. Struct., 81:4 (2007), 575–586 | DOI
[19] Tarnopol'skii Yu.M., Kintsis T.Ya., Methods of Static Testing of Reinforced Plastics, Khimiya, M., 1975, 262 pp. (In Russian)
[20] Carbajal N., Mujika F., “Determination of compressive strength of unidirectional composites by three-point bending tests”, Polym. Test., 28:2 (2009), 150–156 | DOI
[21] Carbajal N., Mujika F., “Determination of longitudinal compressive strength of long fiber composites by three-point bending of $[0_m/9_0n/0_p]$ cross-ply laminated strips”, Polym. Test., 28:6 (2009), 618–626 | DOI
[22] Dufort L., Drapier S., Grediac M., “Closed-form solution for the cross-section warping in short beams under three-point bending”, Compos. Struct., 52:2 (2001), 233–246 | DOI
[23] Beldica C. E., Hilton H. H., “Nonlinear viscoelastic beam bending with piezoelectric control – analytical and computational simulations”, Compos. Struct., 51:2 (2001), 195–203 | DOI
[24] Rabotnov Yu.N., Shesterikov S. A., “Creep stability of columns and plates”, J. Mech. Phys. Solids, 6:1, 27–34 | DOI | MR
[25] Shesterikov S. A., “Criterion of stability of columns in creep”, Prikl. Mat. Mekh., 23:6 (1959), 1101–1106 (In Russian) | MR
[26] Kuznetsov A. P., Kurshin L. M., “Using the hardening theory to solve some problems with the stability of plates and shells in creep”, Prikl. Mekh. Tekh. Fiz., 1960, no. 4, 84–89 (In Russian)
[27] Shesterikov S. A., “Buckling under creep considering instantaneous plastic deformations”, Prikl. Mekh. Tekh. Fiz., 1963, no. 2, 124–129 (In Russian)
[28] Teregulov I. G., “Stability of plates and shells subject to unsteady creep”, Studies on the Theory of Plates and Shells, 3, Izd. Kazan. Univ., Kazan, 1965, 237–243 (In Russian)
[29] Pian T. H. H., “Creep buckling of curved beam under lateral loading”, Proc. 3rd U.S. Nat. Congr. Appl. Mech., Pergamon Press, N. Y., 1958, 649–654
[30] Dumansky A. M., Liu Hao, “Analysis of anisotropy of time-dependent and nonlinear properties of unidirectional CFRP”, IOP Conf. Ser.: Mater. Sci. Eng., 683 (2019), 012093, 1–7 | DOI
[31] Meng M., Le H.R., Rizvi M. J., Grove S. M., “3D FEA modeling of laminated composites in bending and their failure mechanisms”, Compos. Struct., 119 (2015), 693–708 | DOI
[32] Obraztsov I. F., Vasil'ev V.V., “Nonlinear phenomenological models of the deformation of fibrous composite materials”, Mech. Compos. Mater., 18:3 (1982), 259–262 | DOI
[33] Xie M., Adams D. F., “A plasticity model for unidirectional composite materials and its applications in modeling composites testing”, Compos. Sci. Technol., 54:1 (1995), 11–21 | DOI
[34] Lee M. S., Seo H. Y., Kang C. G., “Comparative study on mechanical properties of CR 340/CFRP composites through three point bending test by using theoretical and experimental methods”, Int. J. Precis. Eng. Manuf.-Green Techol., 3:4 (2016), 359–365 | DOI | MR
[35] Paimushin V. N., Kholmogorov S. A., Kaymov R. A., “Experimental investigation of residual strain formation mechanisms in composite laminates under cycling loading”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 4, 2017, 473–492 (In Russian)
[36] Mujika F., Pujana J., Olave M., “On the determination of out-of-plane elastic properties of honeycomb sandwich panels”, Polym. Test., 30:2 (2011), 222–228 | DOI
[37] Fedotenkov G. V., Tarlakovsky D. V., Vahterova Y. A., “Identification of non-stationary load upon Timoshenko beam”, Lobachevskii J. Math., 40:4 (2019), 439–447 | DOI | MR
[38] Grinevich A. V., Yakovlev N. O., Slavin A. V., “Criteria of the failure of polymer matrix composites (review)”, Tr. VIAM, 2019, no. 7 | DOI
[39] Narayanaswami R., Adelman H. M., “Evaluation of the Tensor Polynomial and Hoffman strength theories for composite materials”, J. Compos. Mater., 11:4 (1977), 366–377 | DOI
[40] Washizu K., Variational Methods in Elasticity and Plasticity, Mir, M., 1987, 542 pp. (In Russian)
[41] Bonet J., Wood D., Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge Univ. Press, 2008, xx+318 pp. | DOI | MR
[42] Zienkiewicz O. C., Taylor R. L., The Finite Element Method, v. 2, Solid Mechanics, Butterworth-Heinemann, Oxford, UK, 2000, 316 pp. | MR
[43] Golovanov A. I., Berezhnoi D. V., Finite-Element Method in Mechanics of Deformable Solids, DAS, Kazan, 2001, 301 pp. (In Russian)
[44] Riks E., “An incremental approach to the solution of snapping and buckling problems”, Int. J. Solids Struct., 15:7 (1979), 529–551 | DOI | MR
[45] Crisfield M. A., Non-linear finite element analysis of solids and structures: Essentials, John Wiley Sons, N. Y., 1991, 362 pp. | MR
[46] Crisfield M. A., “A fast incremental/iterative solution procedure that handles “snap-through””, Comput. Struct., 13:1–3 (1981), 55–62 | DOI
[47] Kayumov R. A., Lukankin S. A., Paimushin V. N., Kholmogorov S. A., “Identification of mechanical properties of fiber-reinforced composites”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157, no. 4, 2015, 112–132 (In Russian) | MR