Strength of multilayered plates with impact damage
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 164 (2022) no. 2, pp. 206-220 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article solves one of the central problems of how impact damage affects the strength of polymer composite materials (PCM). Impact damage on sandwich materials varies in the resulting shape and size, thus hampering the numerical assessment of their stress-strain state because these damage characteristics are difficult to predict. Here, we introduced an experimental technique to determine the PCM strength and modeled the impact damage on rectangular plates to illustrate the conclusions drawn. The critical compressive load and stress of the undamaged plates were obtained by the finite element method. The experimental correction function was deduced to evaluate the effect of the damage area and impact energy on the residual strength. Vertical impact testing of the PCM samples was performed. Following the impact on the plate, the depth of the dents and the damage area were measured using the pulse-echo ultrasonic technique. The failure behavior was analyzed layer by layer for individual samples with the help of X-ray computed tomography. For a number of PCM samples, a relationship between the damage size and the impact energy was established. Compression testing of the damaged plates was carried out. The critical buckling loads and the functions of a decrease in the load-bearing capacity of the plates depending on the impact energy value were calculated.
Keywords: composite materials, low-velocity impact, damage, non-destructive inspection, compression after impact, load-bearing capacity.
@article{UZKU_2022_164_2_a4,
     author = {V. I. Mitryaykin and O. N. Bezzametnov},
     title = {Strength of multilayered plates with impact damage},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {206--220},
     year = {2022},
     volume = {164},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2022_164_2_a4/}
}
TY  - JOUR
AU  - V. I. Mitryaykin
AU  - O. N. Bezzametnov
TI  - Strength of multilayered plates with impact damage
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2022
SP  - 206
EP  - 220
VL  - 164
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2022_164_2_a4/
LA  - ru
ID  - UZKU_2022_164_2_a4
ER  - 
%0 Journal Article
%A V. I. Mitryaykin
%A O. N. Bezzametnov
%T Strength of multilayered plates with impact damage
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2022
%P 206-220
%V 164
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2022_164_2_a4/
%G ru
%F UZKU_2022_164_2_a4
V. I. Mitryaykin; O. N. Bezzametnov. Strength of multilayered plates with impact damage. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 164 (2022) no. 2, pp. 206-220. http://geodesic.mathdoc.fr/item/UZKU_2022_164_2_a4/

[1] Kablov E. N., “A 21st century perspective on aircraft materials engineering. Vision and tasks”, Aircraft Materials, Selected Articles of the All-Russian Research Institute of Aircraft Materials, MISIS-VIAM, M., 2002, 23–47 (In Russian)

[2] Fegenbaum Yu.M., Dubinsky S. V., Bozhevalov D. G., Sokolov Yu.S., Metelkin E. S., Ensuring the Integrity of Composite Aircraft Structures with Account of Accidental Operational Impacts, Tekhnosfera, M., 2018, 506 pp. (In Russian) | MR

[3] “CFR 25.571. Assessing damage tolerance and fatigue of structures”, Aviation Requirements, v. 25, Airworthiness standards for transport aircraft, AVIAIZDAT, M., 2015, 76–78 (In Russian) | MR

[4] Advisory Circular: Composite Aircraft Structure, AC No 20–107B, Change: 1, Fed. Aviat. Adm., U.S. Dep. Transp., 2010, 38 pp.

[5] Kan H. P., Cordero R., Whitehead R. S., Advanced Certification Methodology for Composite Structure, Fin. Rep. DOT/FAA/AR-96/111, Fed. Aviat. Adm., U.S. Dep. Transp., 1997, 161 pp.

[6] Certification of passenger aircraft made of polymer composite materials, Scientific Technical Report, TsAGI, Zhukovsky, 1992, 132 pp. (In Russian)

[7] Erasov V. S., Krylov V. D., Panin S. V., Goncharov A. A., “Drop-weight testing of polymer composite material”, Aviat. Mater. Tekhnol., 2013, no. 3, 60–64 (In Russian)

[8] Pavelko I., Smolaninovs M., “Equivalent hole as an evaluation criterion of a composite material residual strength after a low-speed impact”, Mach., Technol., Mater.: Int. Virtual J. Sci., Tech. Innovations Ind., 2010, no. 7, 12–16

[9] Lopes C. S., Camanho P. P., González C., “Advanced simulation of low-velocity impact on fibre reinforced laminates”, Proc. 4th Int. Conf. on Impact Loading of Lightweight Structures, ICCILS 2014, Project: VIRTEST – Multiscale Virtual Testing of CFRP Samples, Cape Town, 2014

[10] Zonghong X., Vizzini A. J., Qingru T., “On residual compressive strength prediction of composite sandwich panels after low-velocity impact damage”, Acta Mech. Solida Sin., 19:1 (2006), 9–17 | DOI

[11] González E. V., Maimí P., Camanho P. P., Turon A., Mayugo J. A., “Simulation of drop-weight impact and compression after impact tests on composite laminates”, Compos. Struct., 94:11 (2012), 3364–3378 | DOI

[12] Linke M., Garcia-Manrique J. A., “Contribution to reduce the influence of the free sliding edge on compression-after-impact testing of thin-walled undamaged composites plates”, Materials, 11:9 (2018), 1708, 1–13 | DOI

[13] Konoplev Yu.G., Til'sh A.P., “Stability of cylindrical shells with cutouts under torsion and external loading”, A Collection of Articles by Postgraduate Students, Theory of Plates and Shells, 2, Izd. Kazan. Univ., Kazan, 1972, 159–165 (In Russian)

[14] Mitryaikin V. I., Dogadkin V. N., Bezzametnov O. N., Iksanov R.Ch., “Testing structural elements with damage”, Sel. Proc. All-Russ. Conf. on the Problems of Science and Technology, The Outcomes of Science, 46, Ross. Akad. Nauk, M., 2020, 9–31 (In Russian)

[15] Birger I. A., Panovko Ya.G. (Eds.), Strength, Stability, and Oscillation, v. 3, Mashinostroenie, M., 1968, 568 pp. (In Russian)