Cruising speed of a cylindrical wing performing small translational-rotational oscillations
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 164 (2022) no. 2, pp. 170-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This work considers the propulsive motion of a flapping wing of a circular cross section. The problem of harmonic translational-rotational oscillations of the wing with an arbitrary phase shift in a viscous incompressible fluid, the motion of which is described by the non-stationary Navier–Stokes equation, is handled. An analytical solution of the problem is obtained in the first two terms by using the method of successive asymptotic expansions for the case of small oscillation amplitudes. It is shown that the nonlinear interaction of time harmonics of translational and rotational oscillations creates secondary flows that make the wing to move in the direction perpendicular to the axis of translational oscillations. For the cruising motion regime, when the average hydrodynamic force acting on the wing is equal to zero, the dependences of the average speed on the parameters of dimensionless oscillation are found.
Keywords: flapping wing, cruising speed, Navier–Stokes equation, asymptotic analysis.
Mots-clés : harmonic oscillations
@article{UZKU_2022_164_2_a1,
     author = {A. G. Egorov and A. N. Nuriev},
     title = {Cruising speed of a cylindrical wing performing small translational-rotational oscillations},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {170--180},
     year = {2022},
     volume = {164},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2022_164_2_a1/}
}
TY  - JOUR
AU  - A. G. Egorov
AU  - A. N. Nuriev
TI  - Cruising speed of a cylindrical wing performing small translational-rotational oscillations
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2022
SP  - 170
EP  - 180
VL  - 164
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2022_164_2_a1/
LA  - ru
ID  - UZKU_2022_164_2_a1
ER  - 
%0 Journal Article
%A A. G. Egorov
%A A. N. Nuriev
%T Cruising speed of a cylindrical wing performing small translational-rotational oscillations
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2022
%P 170-180
%V 164
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2022_164_2_a1/
%G ru
%F UZKU_2022_164_2_a1
A. G. Egorov; A. N. Nuriev. Cruising speed of a cylindrical wing performing small translational-rotational oscillations. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 164 (2022) no. 2, pp. 170-180. http://geodesic.mathdoc.fr/item/UZKU_2022_164_2_a1/

[1] Prandtl L., “Über die Entstehung von Wirbeln in der idealen Flüssigkeit, mit Anwendung auf die Tragflügeltheorie und andere Aufgaben”, Vorträge aus dem Gebiete der Hydro- und Aerodynamik (Innsbruck 1922), eds. v. Kármán T., Levi-Civita T., Springer, Heidelberg–Berlin, 1924, 18–33 (In German) | DOI

[2] Birnbaum W., “Der Schlagflügelpropeller und die kleinen Schwingungen elastisch befestigter Tragflügel”, Z. Flugtech. Motorluftschiffahrt., 15:11–12 (1924), 128–134 (In German)

[3] Keldysh M. V., Lavrent'ev M.A., “On the theory of the oscillating wing”, Collection of articles by the General Theoretical Group at Central Aerohydrodynamic Institute, Tekh. Zametki, 45, 1935, 48–52 (In Russian)

[4] Theodorsen T., General Theory of Aerodynamic Instability and the Mechanism of Flutter, NACA Rep. No 496, Supt. Doc., Washington, 1935, 23 pp.

[5] Nekrasov A. I., Wing Theory in Unsteady Flow, Izd. Akad. Nauk SSSR, M., 1947, 258 pp. (In Russian) | MR

[6] Sedov L. I., Flat Problems of Hydrodynamics and Aerodynamics, Nauka, M., 1966, 448 pp. (In Russian) | MR

[7] Golubev V. V., Lectures on the Theory of Wing, Gos. Izd. Tekh.-Teor. Lit., M.–L., 1949, 480 pp. (In Russian) | MR

[8] Golubev V. V., “On some problems of the theory of a flapping wing”, Uch. Zap. Mosk. Gos. Univ., 1951, no. 152, 3–12 (In Russian)

[9] Schlichting H., “Berechnung ebener periodischer Grenzschichtströmungen”, Phys. Z., 33 (1932), 327–335 (In German)

[10] Holtsmark J., Johnsen I., Sikkeland T., Skavlem S., “Boundary layer flow near a cylindrical obstacle in an oscillating, incompressible fluid”, J. Acoust. Soc. Am., 26:1 (1954), 26–39 | DOI | MR

[11] Riley N., “The steady streaming induced by a vibrating cylinder”, J. Fluid Mech., 68:4 (1975), 801–812 | DOI | MR

[12] Wang Ch.-Y., “On high-frequency oscillatory viscous flows”, J. Fluid Mech., 32:1 (1968), 55–68 | DOI

[13] Nuriev A. N., Egorov A. G., “Asymptotic investigation of hydrodynamic forces acting on an oscillating cylinder at finite streaming Reynolds numbers”, Lobachevskii J. Math., 40:6 (2019), 794–801 | DOI | MR

[14] Riley N., Watson E. J., “Eccentric oscillations of a circular cylinder in a viscous fluid”, Mathematika, 40:2 (1993), 187–202 | DOI | MR

[15] Nuriev A. N., Egorov A. G., “Asymptotic theory of a flapping wing of a circular cross-section”, J. Fluid Mech., 941 (2022), A23, 1–18 | DOI | MR