Mots-clés : AutoDock, VMD
@article{UZKU_2022_164_1_a6,
author = {A. S. Kozlova and A. R. Mukhametgalieva and A. N. Fattakhova and N. I. Akberova},
title = {Software pipeline for predicting and analyzing the structure of the receptor{\textendash}ligand complex},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {122--136},
year = {2022},
volume = {164},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a6/}
}
TY - JOUR AU - A. S. Kozlova AU - A. R. Mukhametgalieva AU - A. N. Fattakhova AU - N. I. Akberova TI - Software pipeline for predicting and analyzing the structure of the receptor–ligand complex JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2022 SP - 122 EP - 136 VL - 164 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a6/ LA - ru ID - UZKU_2022_164_1_a6 ER -
%0 Journal Article %A A. S. Kozlova %A A. R. Mukhametgalieva %A A. N. Fattakhova %A N. I. Akberova %T Software pipeline for predicting and analyzing the structure of the receptor–ligand complex %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2022 %P 122-136 %V 164 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a6/ %G ru %F UZKU_2022_164_1_a6
A. S. Kozlova; A. R. Mukhametgalieva; A. N. Fattakhova; N. I. Akberova. Software pipeline for predicting and analyzing the structure of the receptor–ligand complex. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 164 (2022) no. 1, pp. 122-136. http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a6/
[1] Santos L. H.S., Ferreira R. S., Caffarena E. R., “Integrating molecular docking and molecular dynamics simulations”, Docking Screens for Drug Discovery, Methods in Molecular Biology, 2053, ed. de Azevedo Jr.W., Humana, N. Y., 2019, 13–34 | DOI
[2] Wang X., Kleerekoper Q., Revtovich A. V., Kang D., Kirienko N. V., “Identification and validation of a novel anti-virulent that binds to pyoverdine and inhibits its function”, Virulence, 1:1 (2020), 1293–1309 | DOI
[3] Li H., Jiang X., Shen X., Sun Y., Jiang N., Zeng J., Lin J., Yue L., Lai J., Li Y., Wu A., Wang L., Qin D., Huang F., Mei Q., Yang J., Wu J., “TMEA, a polyphenol in Sanguisorba officinalis, promotes thrombocytopoiesis by upregulating PI3K/Akt signaling”, Front. Cell Dev. Biol., 9 (2021), 708331, 20 pp. | DOI
[4] Karplus M., McCammon J. A., “Molecular dynamics simulations of biomolecules”, Nat. Struct. Mol. Biol., 9 (2002), 646–652 | DOI
[5] Doerr S., Harvey M. J., Noé F., De Fabritiis G., “HTMD: High-throughput molecular dynamics for molecular discovery”, J. Chem. Theory Comput., 12:4 (2016), 1845–1852 | DOI
[6] Buch I., Giorgino T., De Fabritiis G., “Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations”, Proc. Natl. Acad. Sci. U. S. A., 108:25 (2011), 10184–10189 | DOI
[7] Phillips J. C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R. D., Kalé L., Schulten K., “Scalable molecular dynamics with NAMD”, J. Comput. Chem., 26:16 (2005), 1781–1802 | DOI
[8] Huang J., MacKerell A. D. Jr., “CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data”, J. Comput. Chem., 34:25 (2013), 2135–2145 | DOI
[9] Grant B. J., Rodrigues A. P.C., ElSawy K. M., McCammon J. A., Caves L. S.D., “Bio3d: An R package for the comparative analysis of protein structures”, Bioinformatics, 22:21 (2006), 2695–2696 | DOI
[10] Humphrey W., Dalke A., Schulten K., “VMD: Visual molecular dynamics”, J. Mol. Graphics, 14:1 (1996), 33–38 | DOI
[11] Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S., Olson A. J., “AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility”, J. Comput. Chem., 30:16 (2009), 2785–2791 | DOI
[12] O'Boyle N. M., Banck M., James C. A., Morley C., Vandermeersch T., Hutchison G. R., “Open Babel: An open chemical toolbox”, J. Cheminf., 3 (2011), 33, 14 pp. | DOI
[13] Wickham H., ggplot2: Elegant Graphics for Data Analysis, Springer Cham, N. Y., 2016, XVI+260 pp. | DOI
[14] Ayupov R.Kh., Akberova N. I., Tarasov D. S., “Docking of pyridoxine derivatives in the active site of cholinesterases”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 153, no. 3, 2011, 107–118 (In Russian)
[15] Silman I., Sussman J. L., Acetylcholinesterase: How is structure related to function?, Chem.-Biol. Interact., 175:1–3 (2008), 3–10 | DOI
[16] Kim D. E., Chivian D., Baker D., “Protein structure prediction and analysis using the Robetta server”, Nucleic Acids Res., 32 (2004), W526–W531 | DOI
[17] Benkert P., Tosatto S. C., Schomburg D., “QMEAN: A comprehensive scoring function for model quality assessment”, Proteins, 71:1 (2008), 261–277 | DOI
[18] Dvir H., Silman I., Harel M., Rosenberry T. L., Sussman J. L., “Acetylcholinesterase: From 3D structure to function”, Chem.-Biol. Interact., 187:1–3 (2010), 10–22 | DOI
[19] Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I., “Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein”, Science, 253:5022 (1991), 872–879 | DOI
[20] Mukhametgalieva A. R., Kozlova A. S., Akberova N. I., Fattakhova A. N., “Ligands affinity for regulatory sites of human acetylcholesterase and butyrylcholinesterase: A comparative bioinformatic analysis”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 163:1 (2021), 5–19 (In Russian) | DOI