The impact of coagulation and division of drops on the parameters of the gas-drop turbulent jet
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 164 (2022) no. 1, pp. 85-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article is devoted to the definition of conditions under which the calculation of the gas-drop turbulent jet must be carried out with account of the interaction of drops. A mathematical model of the gas-liquid turbulent jet that considers the equations of coagulation and division of drops is presented. The relevance of the research is defined by the fact that many applied tasks in various areas of technology can be solved only by performing calculations with gas-liquid jets, the results of which may be doubtful at certain concentrations of the dispersed phase owing to the neglect of the collision of drops. As a result of the calculation by means of the obtained mathematical model of the gas-drop turbulent jet, three ranges of changes in the initial total volume concentration of drops corresponding to various impacts of the interaction of drops in the jet on its parameters are determined. The lack of influence of drops collisions on all parameters of the jet is characteristic of the first range. The second range differs by insignificant dependence of the speeds of phases on the coagulation of drops. The third range corresponds to the concentration of drops in the initial section of the jet at which there are intensive processes of coagulation and division of drops influencing all parameters of the jet. The following conclusions can be drawn from the results of the research: in the first and second cases, the equation of the mathematical model of the jet does not require to consider the interaction of drops to solve many applied problems; in the third case, it is obligatory to take account of the coagulation and crushing of drops.
Keywords: two-phase jet, gas, drops, coagulation and division of drops, mathematical modelling.
@article{UZKU_2022_164_1_a4,
     author = {Yu. V. Zuev},
     title = {The impact of coagulation and division of drops on the parameters of the gas-drop turbulent jet},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {85--100},
     year = {2022},
     volume = {164},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a4/}
}
TY  - JOUR
AU  - Yu. V. Zuev
TI  - The impact of coagulation and division of drops on the parameters of the gas-drop turbulent jet
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2022
SP  - 85
EP  - 100
VL  - 164
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a4/
LA  - ru
ID  - UZKU_2022_164_1_a4
ER  - 
%0 Journal Article
%A Yu. V. Zuev
%T The impact of coagulation and division of drops on the parameters of the gas-drop turbulent jet
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2022
%P 85-100
%V 164
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a4/
%G ru
%F UZKU_2022_164_1_a4
Yu. V. Zuev. The impact of coagulation and division of drops on the parameters of the gas-drop turbulent jet. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 164 (2022) no. 1, pp. 85-100. http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a4/

[1] Zuev Yu.V., Karpyshev A. V., Lepeshinskii I. A., Fire-extinguishing installation, Patent RF. 2121390. Byull. Izobret. 31, 1998, 15 pp. (In Russian)

[2] Babukha G. L., Schreiber A. A., Interaction between Particles of a Polydisperse Material in Two-Phase Flows, Nauk. Dumka, Kyiv, 1972, 175 pp. (In Russian)

[3] Friedlander S. K., Smoke, Dust and Haze: Fundamentals of Aerosol Behavior, Wiley and Sons, N. Y., 1977, 317 pp.

[4] Okuyama K., Kousaka Y., Yoshida T., “Turbulent coagulation of aerosols in a pipe flow”, J. Aerosol. Sci., 9:5 (1978), 399–410 | DOI

[5] Sternin L. E., Fundamentals of Gas Dynamics of Two-Phase Flows in Nozzles, Mashinostroenie, M., 1974, 212 pp. (In Russian)

[6] Elghobashi S., “Particle-laden turbulent flows: Direct simulation and closure models”, Appl. Sci. Res., 48:3–4 (1991), 301–314 | DOI

[7] Varaksin A.Yu., Collisions in Gas Flows with Solid Particles, Fizmatlit, M., 2008, 312 pp. (In Russian)

[8] Zuev Yu.V., “About the use of the Stokes number for mathematical modeling of two-phase jet flows”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 161, no. 3, 2019, 341–354 (In Russian) | DOI

[9] Nigmatulin R. I., Dynamics of Multiphase Media, v. 1, Nauka, M., 1987, 464 pp. (In Russian)

[10] Hinze J. O., Turbulence: An Introduction to Its Mechanisms and Theory, Fizmatgiz, M., 1963, 680 pp. (In Russian)

[11] Sternin L. E., Schreiber A. A., Multiphase Flows of Gas with Particles, Mashinostroenie, M., 1994, 320 pp. (In Russian)

[12] W. Frost, T. Moulden (eds.), Handbook of Turbulence, v. 1, Fundamentals and applications, Plenum Press, N. Y.–London, 1977, 498 pp.

[13] Krasheninnikov S.Yu., “Calculation of axisymmetric swirling and non-swirling turbulent jets”, Izv. Akad. Nauk SSSR. Ser. MZhG, 1972, no. 3, 71–80 (In Russian)

[14] Abramovich G. N., Girshovich T. A., Krasheninnikov S.Yu., Sekundov A. N., Smirnova I. P., Theory of Turbulent Jets, ed. Abramovich G. N., Nauka, M., 1984, 716 pp. (In Russian)

[15] Zuev Yu.V., Lepeshinskii I. A., Reshetnikov V. A., Istomin E. A., “Selection of criteria and determination of their values for estimating the phase interaction behavior in two-phase turbulent jets”, Vestn. MGTU im. N.E. Baumana. Ser. Mashinostr., 2012, no. 1, 42–54 (In Russian)

[16] Samarskii A. A., Theory of Difference Schemes, Nauka, M., 1989, 616 pp. (In Russian)

[17] Schreiber A. A., Gavin L. B., Naumov V. A., Yatsenko V. P., Turbulent Flows of a Gas Suspension, Nauk. Dumka, Kyiv, 1987, 240 pp. (In Russian)

[18] Mostafa A. A., Mongia H. C., McDonell V. G., Samuelsen G. S., “Evolution of particle-laden jet flows: A theoretical and experimental study”, AIAA J., 27:2 (1989), 167–183 | DOI

[19] Zuev Yu.V., “Some reasons for nonmonotonic variation of descrete-phase concentration in a turbulent two-phase jet”, Fluid Dyn., 55:2 (2020), 194–203 | DOI | DOI