@article{UZKU_2022_164_1_a3,
author = {R. Z. Dautov},
title = {An efficient numerical method for determining trapped modes in acoustic waveguides},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {68--84},
year = {2022},
volume = {164},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a3/}
}
TY - JOUR AU - R. Z. Dautov TI - An efficient numerical method for determining trapped modes in acoustic waveguides JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2022 SP - 68 EP - 84 VL - 164 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a3/ LA - ru ID - UZKU_2022_164_1_a3 ER -
%0 Journal Article %A R. Z. Dautov %T An efficient numerical method for determining trapped modes in acoustic waveguides %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2022 %P 68-84 %V 164 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a3/ %G ru %F UZKU_2022_164_1_a3
R. Z. Dautov. An efficient numerical method for determining trapped modes in acoustic waveguides. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 164 (2022) no. 1, pp. 68-84. http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a3/
[1] Callan M. A., Linton C. M., Evans D. V., “Trapped modes in two-dimensional waveguides”, J. Fluid Mech., 229 (1991), 51–64 | DOI
[2] Evans D. V., Linton C. M., Ursell F., “Trapped mode frequencies embedded in the continuous spectrum”, Q. J. Mech. Appl. Math., 46:2 (1993), 253–274 | DOI
[3] Evans D. V., Porter R., “Trapping and near-trapping by arrays of cylinders in waves”, J. Eng. Math., 35 (1999), 149–179 | DOI
[4] Exner P., Seba P., “Bound states in curved quantum waveguides”, J. Math. Phys., 30:11 (1989), 2574–2580 | DOI
[5] Postnova J., Craster R. V., “Trapped modes in elastic plates, ocean and quantum waveguides”, Wave Motion, 45:4 (2008), 565–579 | DOI
[6] Caspers F., Scholz T., “Measurement of trapped modes in perforated waveguides”, Part. Accel., 51 (1989), 251–262
[7] Evans D. V., Levitin M., Vassiliev D., “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI
[8] Linton C. M., McIver M., McIver P., Ratcliffe K., Zhang J., “Trapped modes for off-centre structures in guides”, Wave Motion, 36:1 (2002), 67–85 | DOI
[9] Linton C. M., McIver P., “Embedded trapped modes in water waves and acoustics”, Wave Motion, 45:1–2 (2007), 16–29 | DOI
[10] Nazarov S. A., “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains”, Sobolev Spaces in Mathematics, v. II, International Mathematical Series, 9, ed. Maz'ya V., Springer, N. Y., 2009, 261–309 | DOI
[11] Nazarov S. A., “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold”, Sib. Math. J., 51:5 (2010), 866–878 | DOI
[12] Evans D. V., Linton C. M., “Trapped modes in open channels”, J. Fluid Mech., 225 (1991), 153–175 | DOI
[13] McIver M., Linton C. M., McIver P., Zhang J., Porter R., “Embedded trapped modes for obstacles in two-dimensional waveguides”, Q. J. Mech. Appl. Math., 54:2 (2001), 273–293 | DOI
[14] Sargent C. V., Mestel A. J., “Trapped modes of the Helmholtz equation in infinite waveguides with wall indentations and circular obstacles”, IMA J. Appl. Math., 84:2 (2019), 312–344 | DOI
[15] Levitin M., Marletta M., “A simple method of calculating eigenvalues and resonances in domains with infinite regular ends”, Proc. R. Soc. Edinburgh, Sect. A: Math., 138:5 (2008), 1043–1065 | DOI
[16] Keller J. B., Givoli D., “Exact non-reflecting boundary conditions”, J. Comput. Phys., 82:1 (1989), 172–192 | DOI
[17] Givoli D., “Non-reflecting boundary conditions”, J. Comput. Phys., 94:1 (1991), 1–29 | DOI
[18] Dautov R. Z., Karchevskii E. M., “On a spectral problem of the theory of dielectric waveguides”, Comput. Math. Math. Phys., 39:8 (1999), 1293–1299
[19] Dautov R. Z., Karchevskii E. M., “Existence and properties of solutions to the spectral problem of the dielectric waveguide theory”, Comput. Math. Math. Phys., 40:8 (2000), 1200–1213
[20] Dautov R. Z., Karchevskii E. M., Kornilov G. P., “A numerical method for finding dispersion curves and guided waves of optical waveguides”, Comput. Math. Math. Phys., 45:12 (2005), 2119–2134
[21] Kress R., Linear Integral Equations, Springer, N. Y., 1999, xiv+367 pp.
[22] Solov'ëv S.I., “Preconditioned iterative methods for a class of nonlinear eigenvalue problems”, Linear Algebra Its Appl., 415:1 (2006), 210–229 | DOI
[23] Dautov R. Z., Lyashko A. D., Solov'ev S.I., “The bisection method for symmetric eigenvalue problems with a parameter entering nonlinearly”, Russ. J. Numer. Anal. Math. Modelling, 9:5 (1994), 417–427 | DOI
[24] D'yakonov E. G., Optimization in Solving Elliptic Problems, CRC Press, 1996, 590 pp. | DOI