An efficient numerical method for determining trapped modes in acoustic waveguides
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 164 (2022) no. 1, pp. 68-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An efficient numerical method for determining all trapped modes of the Helmholtz equation based on the finite element method and exact nonlocal boundary conditions is proposed. An infinite two-dimensional channel with parallel walls at infinity, which may contain obstacles of arbitrary shape, is considered. It is assumed that the frequencies of the trapped modes lie below a certain threshold value. The discrete problem is an algebraic eigenvalue problem for symmetric positive definite sparse matrices, one of which depends nonlinearly on the spectral parameter. A fast iterative method for solving such problems is introduced. The results of the numerical calculations are presented.
Keywords: acoustic waveguide, trapped mode, discrete and continuous spectrum, finite element method, nonlinear spectral problem.
@article{UZKU_2022_164_1_a3,
     author = {R. Z. Dautov},
     title = {An efficient numerical method for determining trapped modes in acoustic waveguides},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {68--84},
     year = {2022},
     volume = {164},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a3/}
}
TY  - JOUR
AU  - R. Z. Dautov
TI  - An efficient numerical method for determining trapped modes in acoustic waveguides
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2022
SP  - 68
EP  - 84
VL  - 164
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a3/
LA  - ru
ID  - UZKU_2022_164_1_a3
ER  - 
%0 Journal Article
%A R. Z. Dautov
%T An efficient numerical method for determining trapped modes in acoustic waveguides
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2022
%P 68-84
%V 164
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a3/
%G ru
%F UZKU_2022_164_1_a3
R. Z. Dautov. An efficient numerical method for determining trapped modes in acoustic waveguides. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 164 (2022) no. 1, pp. 68-84. http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a3/

[1] Callan M. A., Linton C. M., Evans D. V., “Trapped modes in two-dimensional waveguides”, J. Fluid Mech., 229 (1991), 51–64 | DOI

[2] Evans D. V., Linton C. M., Ursell F., “Trapped mode frequencies embedded in the continuous spectrum”, Q. J. Mech. Appl. Math., 46:2 (1993), 253–274 | DOI

[3] Evans D. V., Porter R., “Trapping and near-trapping by arrays of cylinders in waves”, J. Eng. Math., 35 (1999), 149–179 | DOI

[4] Exner P., Seba P., “Bound states in curved quantum waveguides”, J. Math. Phys., 30:11 (1989), 2574–2580 | DOI

[5] Postnova J., Craster R. V., “Trapped modes in elastic plates, ocean and quantum waveguides”, Wave Motion, 45:4 (2008), 565–579 | DOI

[6] Caspers F., Scholz T., “Measurement of trapped modes in perforated waveguides”, Part. Accel., 51 (1989), 251–262

[7] Evans D. V., Levitin M., Vassiliev D., “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI

[8] Linton C. M., McIver M., McIver P., Ratcliffe K., Zhang J., “Trapped modes for off-centre structures in guides”, Wave Motion, 36:1 (2002), 67–85 | DOI

[9] Linton C. M., McIver P., “Embedded trapped modes in water waves and acoustics”, Wave Motion, 45:1–2 (2007), 16–29 | DOI

[10] Nazarov S. A., “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains”, Sobolev Spaces in Mathematics, v. II, International Mathematical Series, 9, ed. Maz'ya V., Springer, N. Y., 2009, 261–309 | DOI

[11] Nazarov S. A., “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold”, Sib. Math. J., 51:5 (2010), 866–878 | DOI

[12] Evans D. V., Linton C. M., “Trapped modes in open channels”, J. Fluid Mech., 225 (1991), 153–175 | DOI

[13] McIver M., Linton C. M., McIver P., Zhang J., Porter R., “Embedded trapped modes for obstacles in two-dimensional waveguides”, Q. J. Mech. Appl. Math., 54:2 (2001), 273–293 | DOI

[14] Sargent C. V., Mestel A. J., “Trapped modes of the Helmholtz equation in infinite waveguides with wall indentations and circular obstacles”, IMA J. Appl. Math., 84:2 (2019), 312–344 | DOI

[15] Levitin M., Marletta M., “A simple method of calculating eigenvalues and resonances in domains with infinite regular ends”, Proc. R. Soc. Edinburgh, Sect. A: Math., 138:5 (2008), 1043–1065 | DOI

[16] Keller J. B., Givoli D., “Exact non-reflecting boundary conditions”, J. Comput. Phys., 82:1 (1989), 172–192 | DOI

[17] Givoli D., “Non-reflecting boundary conditions”, J. Comput. Phys., 94:1 (1991), 1–29 | DOI

[18] Dautov R. Z., Karchevskii E. M., “On a spectral problem of the theory of dielectric waveguides”, Comput. Math. Math. Phys., 39:8 (1999), 1293–1299

[19] Dautov R. Z., Karchevskii E. M., “Existence and properties of solutions to the spectral problem of the dielectric waveguide theory”, Comput. Math. Math. Phys., 40:8 (2000), 1200–1213

[20] Dautov R. Z., Karchevskii E. M., Kornilov G. P., “A numerical method for finding dispersion curves and guided waves of optical waveguides”, Comput. Math. Math. Phys., 45:12 (2005), 2119–2134

[21] Kress R., Linear Integral Equations, Springer, N. Y., 1999, xiv+367 pp.

[22] Solov'ëv S.I., “Preconditioned iterative methods for a class of nonlinear eigenvalue problems”, Linear Algebra Its Appl., 415:1 (2006), 210–229 | DOI

[23] Dautov R. Z., Lyashko A. D., Solov'ev S.I., “The bisection method for symmetric eigenvalue problems with a parameter entering nonlinearly”, Russ. J. Numer. Anal. Math. Modelling, 9:5 (1994), 417–427 | DOI

[24] D'yakonov E. G., Optimization in Solving Elliptic Problems, CRC Press, 1996, 590 pp. | DOI