On non-quasianalytic classes of infinitely differentiable functions
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 164 (2022) no. 1, pp. 43-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article investigates the connection between two positive logarithmically convex sequences $\{\widehat{M}_n\}$ and $\{M_n\}$, which define respectively the Carleman classes of functions infinitely differentiable on the set $J$ and sequences $\{b_n\}$ specifying the values of the function itself and all its derivatives at some point $x_0\in J$. The results obtained are more general than those previously known, and explicit constructions of the required functions are proposed with estimates for the norms of the functions themselves and their $n$ derivatives in the Lebesgue spaces $L_r(J)$, not only for the classical case $r=\infty$ but also for any $r\geqslant 1$. Obviously, $M_n\leqslant\widehat{M}_n$ is always observed. Here the sequences $\{\widehat{M}_n\}$, for which equality holds, are indicated and specific examples are given.
Keywords: non-quasianalytical Carleman classes, logarithmically convex, condition sequence, function, satisfying, regularization, fundamental indices.
Mots-clés : existence, construction
@article{UZKU_2022_164_1_a1,
     author = {G. S. Balashova},
     title = {On non-quasianalytic classes of infinitely differentiable functions},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {43--59},
     year = {2022},
     volume = {164},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a1/}
}
TY  - JOUR
AU  - G. S. Balashova
TI  - On non-quasianalytic classes of infinitely differentiable functions
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2022
SP  - 43
EP  - 59
VL  - 164
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a1/
LA  - ru
ID  - UZKU_2022_164_1_a1
ER  - 
%0 Journal Article
%A G. S. Balashova
%T On non-quasianalytic classes of infinitely differentiable functions
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2022
%P 43-59
%V 164
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a1/
%G ru
%F UZKU_2022_164_1_a1
G. S. Balashova. On non-quasianalytic classes of infinitely differentiable functions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 164 (2022) no. 1, pp. 43-59. http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a1/

[1] Mandelbrojt S., Adjacent Series. Regularization of Sequences. Applications, Gostekhizdat, M., 1955, 268 pp. (In Russian)

[2] Bang T., On quasi-analytiske Funktioner, Thesis, Nyt Nordisk Forlag, Arnold Busck, Kjøbenhavn, 1946, 101 pp. (In Danish)

[3] Carleson L., “On universal moment problems”, Math. Scand., 9:1b (1961), 197–206

[4] Mityagin B. S., “Approximate dimension and bases in nuclear spaces”, Russ. Math. Surv., 16:4 (1961), 59–127 | DOI

[5] Erenpreis L., The Punctual and Local Images of Quasi-Analytic and Non-Quasi-Analytic Classes, Inst. Adv. Study, Princeton, N. J., 1961, 20 pp.

[6] Janashia G. A., “Carleman's problem for the class of Gevrey functions”, Dokl. Akad. Nauk SSSR, 145:2 (1962), 259–262 (In Russian)

[7] Wahde G., “Interpolation on non-quasi-analytic classes of infinitely differentiable functions”, Math. Scand., 20:1 (1967), 19–31

[8] Zobin N. M., “Extension and representation theorems for Gevrey type spaces”, Dokl. Akad. Nauk SSSR, 212:6 (1973), 1280–1283 (In Russian)

[9] Bronshtein M. D., “Continuation of functions in nonquasianalytic Carleman classes”, Russ. Math., 30:12 (1986), 11–14

[10] Fichtenholz G. M., A Course in Differential and Integral Calculus, v. 2, Nauka, M., 1969, 800 pp. (In Russian)

[11] Badaljan G. V., “On classification and representation of infinitely differentiable functions”, Izv. Math., 4:3 (1970), 587–626 | DOI