Covering groups and their applications: A survey
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 164 (2022) no. 1, pp. 5-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article is a survey of covering group theorems and their applications. For a given covering mapping from the topological space onto a topological group, it is natural to pose the following question on the lifting of the group structure from the base of the covering mapping to its covering space: do there exist group operations on the covering space that turn this space into a topological group and the original covering mapping into a morphism of topological groups? Each statement giving the positive answer to this question for any class of covering mappings is called a covering group theorem. Here the main stages in the proof of the covering group theorem for finite-sheeted covering mappings from connected topological spaces onto arbitrary compact connected groups are explored. This theorem and the method of its proof have a number of interesting applications in analysis, topology, and topological algebra. The results on the coverings of topological groups obtained by applying this theorem or by using an approximation construction which is built in its proof are discussed. The theorems under study are those establishing a close relationship between the finite-sheeted coverings of compact connected Abelian groups and the polynomials over Banach algebras of continuous functions, i.e., Weierstrass polynomials. Informally speaking, all finite-sheeted coverings of compact connected Abelian groups are defined by zero sets of simple Weierstrass polynomials. Connected coverings of $P$ -adic solenoids are considered. A complete description of such finite-sheeted coverings is provided by using the above-mentioned approximation construction. Applications of the covering group theorems are specified, as well as their corollaries to the study of the structure of coverings and to the problem with the existence of generalized means on topological groups. Particular attention is paid to the applications related to the properties of the solutions of algebraic equations with continuous coefficients.
Keywords: algebraic equation with continuous coefficients, Weierstrass variety, covering group, covering mapping onto topological group, covering homomorphism, overlay mapping, polynomial covering, covering group theorem.
Mots-clés : Weierstrass polynomial, $P$ -adic solenoid
@article{UZKU_2022_164_1_a0,
     author = {R. N. Gumerov},
     title = {Covering groups and their applications: {A} survey},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {5--42},
     year = {2022},
     volume = {164},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a0/}
}
TY  - JOUR
AU  - R. N. Gumerov
TI  - Covering groups and their applications: A survey
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2022
SP  - 5
EP  - 42
VL  - 164
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a0/
LA  - ru
ID  - UZKU_2022_164_1_a0
ER  - 
%0 Journal Article
%A R. N. Gumerov
%T Covering groups and their applications: A survey
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2022
%P 5-42
%V 164
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a0/
%G ru
%F UZKU_2022_164_1_a0
R. N. Gumerov. Covering groups and their applications: A survey. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 164 (2022) no. 1, pp. 5-42. http://geodesic.mathdoc.fr/item/UZKU_2022_164_1_a0/

[1] Pontryagin L. S., Continuous Groups, Nauka, M., 1984, 520 pp. (In Russian)

[2] Hansen V. L., “Polynomial covering spaces and homomorphisms into braid groups”, Pac. J. Math., 81:2 (1979), 399–410 | DOI

[3] Hansen V. L., “Coverings defined by Weierstrass polynomials”, J. Reine Angew. Math., 314 (1980), 29–39 | DOI

[4] Weierstrass K., “Einige auf die Theorie der analytischen Functionen Veränderlichen sich beziechende Sätze”, Mathematische Werke, v. II, Mayer und Müller, Berlin, 1895, 135–188 (In German)

[5] Vietoris L., “Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen”, Math. Ann., 97 (1927), 454–472 (In German) | DOI

[6] Van Dantzig D., van der Waerden B. L., “Über metrisch homogene Räume”, Abh. Math. Semin. Univ. Hamburg., 6 (1928), 367–376 (In German)

[7] Van Dantzig D., “Über topologisch homogene Kontinua”, Fundam. Math., 15 (1930), 102–125 (In German) | DOI

[8] Van Dantzig D., “Zur topologischen Algebra. III. Brouwersche und Cantorsche Gruppen”, Compos. Math., 3 (1936), 408–426 (In German)

[9] Steenrod N., Eilenberg S., Foundations of Algebraic Topology, Gos. Izd. Fiz.-Mat. Lit., M., 1958, 403 pp. (In Russian)

[10] Hewitt E., Ross K., Abstract Harmonic Analysis, v. 1, Nauka, M., 1975, 654 pp. (In Russian)

[11] Kolmogorov A. N., “Sur la notion de la moyenne”, Atti Accad. Naz. Lincei. Rend., 12:9 (1930), 388–391 (In French)

[12] Engelking R., General Topology, Mir, M., 1986, 751 pp. (In Russian)

[13] Helemskii A. Ya., The Homology of Banach and Topological Algebras, Izd. Mosk. Univ., M., 1986, 288 pp. (In Russian)

[14] Massey W. S., Stallings J., Algebraic Topology. An Introduction, Mir, M., 1977, 344 pp. (In Russian)

[15] Chevalley L., Theory of Lie Groups, v. 1, Izd. Inostr. Lit., M., 1948, 316 pp. (In Russian)

[16] Naimark M. A., Theory of Group Representations, Nauka, M., 1976, 560 pp. (In Russian)

[17] Clark A., “A generalization of Hagopian's theorem and exponents”, Topol. Its Appl., 117:3 (2002), 273–283 | DOI

[18] Grigorian S. A., Gumerov R. N., Kazantsev A. V., “Group structure in finite coverings of compact solenoidal groups”, Lobachevskii J. Math., 6 (2000), 39–46

[19] Grigorian S. A., Gumerov R. N., “On a covering group theorem and its applications”, Lobachevskii J. Math., 10 (2002), 9–16

[20] Grigorian S. A., Gumerov R. N., On the structure of finite coverings of compact connected groups, 2004, 17 pp., arXiv: math/0403329

[21] Grigorian S. A., Gumerov R. N., “On the structure of finite coverings of compact connected groups”, Topol. Its Appl., 153:18 (2006), 3598–3614 | DOI

[22] Eda K., Matijević V., “Finite-sheeted covering maps over $2$-dimensional connected, compact Abelian groups”, Topol. Its Appl., 153:7 (2006), 1033–1045 | DOI

[23] Alexandroff P., “Untersuchungen über Gestalt und Lage abgeschlossener Mengen beliebiger Dimension”, Ann. Math., 30:1/4 (1929), 101–187 | DOI

[24] Aleksandrov P. S., “Some moments in the development of the Moscow school of general topology in the last half-century”, Usp. Mat. Nauk, 35:4 (1980), 217–221 (In Russian)

[25] Weil A., Integration in Topological Groups and Its Applications, Izd. Inostr. Lit., M., 1950, 222 pp. (In Russian)

[26] Hofmann K. H., Morris S. A., The Structure of Compact Groups: A Primer for the Student – A Handbook for the Expert, de Gruyter Stud. Math., 25, Walter de Gruyter, Berlin, 2006, xvii+858 pp.

[27] Spanier E. H., Algebraic Topology, McGraw-Hill, N. Y., 1966, xiv+528 pp.

[28] Gumerov R. N., “On covering groups”, Russ. Math., 64:3 (2020), 76–81 | DOI | DOI

[29] Mardešić S., Matijević V., “Classifying overlay structures of topological spaces”, Topol. Its Appl., 113:1–3 (2001), 167–209 | DOI

[30] Taylor R. L., “Covering groups of non-connected topological groups”, Proc. Am. Math. Soc., 5:5 (1954), 753–768 | DOI

[31] Brown R., Mucuk O., “Covering groups of non-connected topological groups revisited”, Math. Proc. Cambridge Philos. Soc., 115:1 (1994), 97–110 | DOI

[32] Eda K., Matijević V., “Covering maps over solenoids which are not covering homomorphisms”, Fundam. Math., 221:1 (2013), 69–82 | DOI

[33] Fox R. H., “On shape”, Fundam. Math., 74 (1972), 47–71 | DOI

[34] Fox R. H., “Shape theory and covering spaces”, Topology Conference, Lecture Notes in Mathematics, 375, eds. Dickman R. F., Fletcher P., Springer, Berlin–Heidelberg, 1974, 71–90 | DOI

[35] Moore T. T., “On Fox's theory of overlays”, Fundam. Math., 99 (1978), 205–211 | DOI

[36] Matijević V., “Classifying finite-sheeted coverings of paracompact spaces”, Rev. Mat. Comput., 16:1 (2003), 311–327 | DOI

[37] Brazas J., “Semicoverings, coverings, overlays and open subgroups of the quasitopological fundamental group”, Topol. Proc., 44 (2014), 285–313

[38] Dydak J., “Overlays and group actions”, Topol. Its Appl., 207 (2016), 22–32 | DOI

[39] Eda K., Matijević V., “Existence and uniqueness of group structures on covering spaces over groups”, Fundam. Math., 238 (2017), 241–267 | DOI

[40] Gumerov R. N., Group structures and their applications in analysis and topological algebra, Doct. Phys.-Math. Sci. Diss., Kazan, 2020, 214 pp. (In Russian)

[41] Deckard D., Pearcy C., “On matrices over the ring of continuous functions on a Stonian space”, Proc. Am. Math. Soc., 14 (1963), 322–328 | DOI

[42] Deckard D., Pearcy C., “On algebraic closure in function algebras”, Proc. Am. Math. Soc., 15 (1964), 259–263 | DOI

[43] Countryman R. S. Jr., “On the characterization of compact Hausdorff $X$ for which $C(X)$ is algebraically closed”, Pac. J. Math., 20:3 (1967), 433–448 | DOI

[44] Gorin E. A., Lin V.Ya., “Algebraic equations with continuous coefficients and some problems of the algebraic theory of braids”, Sb. Math., 7:4 (1969), 569–596 | DOI

[45] Zhikov V. V., “The problem on the existence of almost periodic solutions of differetial and operator equations”, Tr. VELI, 8, 1969, 94–188 (In Russian)

[46] Walther A., “Algebraische Funktionen von fastperiodischen Funktionen”, Monatsh. Math. Phys., 40 (1933), 444–457 | DOI

[47] Bohr H., Flanders D. A., “Algebraic equations with almost-periodic coefficients”, Det Kgl. Danske Videnskabernes Selskab. Mathematisk-fysiske Meddelelser, 15, Levin Munksgaard, København, 1937, 1–49

[48] Bohr H., Flanders D. A., “Algebraic functions of analytic almost periodic functions”, Duke Math. J., 4:4 (1938), 779–787 | DOI

[49] Lin V.Ya., “Artin braids and the groups and spaces connected with them”, J. Sov. Math., 18 (1982), 736–788 | DOI

[50] Hatori O., Miura T., “On a characterization of the maximal ideal spaces of commutative $C^*$-algebras in which every element is the square of another”, Proc. Am. Math. Soc., 128:4 (2000), 1185–1189 | DOI

[51] Miura T., Niijima K., “On a characterization of the maximal ideal spaces of algebraically closed commutative $C^*$-algebras”, Proc. Am. Math. Soc., 131:9 (2003), 2869–2876 | DOI

[52] Kawamura K., Miura T., “On the existence of continious (approximate) roots of algebraic equations”, Topol. Its Appl., 154:2 (2007), 434–442 | DOI

[53] Honma D., Miura T., “On characterization of compact Hausdorff space $X$ for which certain algebraic equation is solvable in $C(X)$”, Tokyo J. Math., 30:2 (2007), 403–416 | DOI

[54] Kawamura K., Miura T., “On the root closedness of continuous function algebras”, Topol. Its Appl., 156:3 (2009), 624–628 | DOI

[55] Kawamura K., “Higher dimensional compacta with algebraically closed function algebras”, Tokyo J. Math., 32:2 (2009), 441–445 | DOI

[56] Hansen V. L., “Embedding finite covering spaces into trivial bundles”, Math. Ann., 236 (1978), 239–243 | DOI

[57] Hansen V. L., Braids and Coverings: Selected Topics, London Math. Soc. Stud. Texts, 18, Cambridge Univ. Press, Cambridge, 1989, 202 pp.

[58] Hansen V. L., “Weierstrass polynomials for links”, Beitr. Algebra Geometrie, 39:2 (1998), 359–365

[59] Bardakov V. G., Vesnin A. Yu., “Weierstrass polynomials of singular braids and links”, Chebyshevskii Sb., 6:2 (2005), 36–51 (In Russian)

[60] Møller J. M., “On polynomial coverings and their classification”, Math. Scand., 47:1 (1980), 116–122

[61] Hansen V. L., “Algebra and topology of Weierstrass polynomials”, Expos. Math., 5 (1987), 267–274

[62] Hansen V. L., “A model for embedding finite coverings defined by principal bundles into bundules of manifolds”, Topol. Its Appl., 28:1 (1988), 1–9 | DOI

[63] Hansen V. L., “The characteristic algebra of a polynomial covering map”, Math. Scand., 64:1 (1989), 219–225 | DOI

[64] Hansen V. L., Petersen P., “Groups, coverings and Galois theory”, Can. J. Math., 43:6 (1991), 1281–1293 | DOI

[65] Gumerov R. N., “Weierstrass polynomials and coverings of compact groups”, Sib. Math. J., 54:2 (2013), 243–246 | DOI

[66] McCord M. C., “Inverse limit sequences with covering maps”, Trans. Am. Math. Soc., 114 (1965), 197–209 | DOI

[67] Bing R. H., “A simple closed curve is the only homogeneous bounded plane continuum that contains an arc”, Can. J. Math., 12 (1960), 209–230 | DOI

[68] Aarts J. M., Fokkink R. J., “The classification of solenoids”, Proc. Am. Math. Soc., 111 (1991), 1161–1163 | DOI

[69] Bogatyi S. A., Frolkina O. D., “Classification of generalized solenoids”, Proc. Semin. on Vector and Tensor Analysis with Their Applications to Geometry, Mechanics, and Physics, XXVI, Mosk. Gos. Univ., M., 2005, 31–59 (In Russian)

[70] Zhou Y., “Covering mappings on solenoids and their dynamical properties”, Chin. Sci. Bull., 45:12 (2000), 1066–1070 | DOI

[71] Kwapisz J., “Homotopy and dynamics for homeomorphisms of solenoids and Knaster continua”, Fundam. Math., 168:3 (2001), 251–278 | DOI

[72] Charatonik J. J., Covarrubias P. P., “On covering mappings on solenoids”, Proc. Am. Math. Soc., 130:7 (2002), 2145–2154 | DOI

[73] Aarts J. M., Fokkink R. J., “Mappings on the dyadic solenoid”, Commentat. Math. Univ. Carol., 44:4 (2003), 697–699

[74] Gumerov R. N., On finite-sheeted covering mappings onto solenoids, 2003, 8 pp., arXiv: math/0312288v1

[75] Gumerov R. N., “On finite-sheeted covering mappings onto solenoids”, Proc. Am. Math. Soc., 133:9 (2005), 2771–2778 | DOI

[76] Jiang B., Wang S., Zheng Y., “No embeddings of solenoids into surfaces”, Proc. Am. Math. Soc., 136:10 (2008), 3697–3700 | DOI

[77] Bogatyi S., Frolkina O., “On multiplicity of maps”, Topol. Its Appl., 159:7 (2012), 1778–1786 | DOI

[78] Boroński J. P., Sturm F., “Finite-sheeted covering spaces and a near local homeomorphism property for pseudosolenoids”, Topol. Its Appl., 161:1 (2014), 235–242 | DOI

[79] Brownlowe N., Raeburn I., “Two families of Exel–Larsen crossed products”, J. Math. Anal. Appl., 398:1 (2013), 68–79 | DOI

[80] Gumerov R. N., “Limit automorphisms of the $C^*$-algebras generated by isometric representations for semigroups of rationals”, Sib. Math. J., 59:1 (2018), 73–84 | DOI | DOI

[81] Gumerov R. N., “Coverings of solenoids and automorphisms of semigroup $C^*$-algebras”, Uchenye Zapiski Kazanskogo Universiteta. Seria Fiziko-Matematicheskie Nauki, 160, no. 2, 2018, 275–286

[82] Gumerov R. N., “Inductive sequences of Toeplitz algebras and limit automorphisms”, Lobachevskii J. Math., 41:4 (2020), 637–643 | DOI

[83] Gumerov R. N., Lipacheva E. V., Grigoryan T. A., “On inductive limits for systems of $C^*$-algebras”, Russ. Math., 62:7 (2018), 68–73 | DOI

[84] Gumerov R. N., “Inductive limits for systems of Toeplitz algebras”, Lobachevskii J. Math., 40:4 (2019), 469–478 | DOI

[85] Lipacheva E. V., “Embedding semigroup $C^*$-algebras into inductive limits”, Lobachevskii J. Math., 40:5 (2019), 667–675 | DOI

[86] Gumerov R. N., Lipacheva E. V., “Inductive systems of $C^*$-algebras over posets: A survey”, Lobachevskii J. Math., 41:4 (2020), 644–654 | DOI

[87] Gumerov R. N., Lipacheva E. V., Grigoryan T. A., “On a topology and limits for inductive systems of $C^*$-algebras over partially ordered sets”, Int. J. Theor. Phys., 60:9 (2021), 499–511 | DOI

[88] Grigoryan S. A., Gumerov R. N., Lipacheva E. V., “Limits of inductive sequences of Toeplitz–Cuntz algebras”, Proc. Steklov Inst. Math., 313 (2021), 60–69 | DOI | DOI

[89] Charatonik J. J., “Means on arc-like continua”, Problems from Topology Proceedings, ed. E. Pearl, Topol. Atlas, Toronto, 2003, 197–200

[90] Aumann G., “Über Räume mit Mittelbildungen”, Math. Ann., 119 (1944), 210–215 (In German) | DOI

[91] Eckmann B., “Räume mit Mittelbildungen”, Comment. Math. Helvetici, 28 (1954), 329–340 (In German) | DOI

[92] Eckmann B., Ganea T., Hilton P. J., “Generalized means”, Studies in Analysis and Related Topics, Stanford Univ. Press, Stanford, Calif., 1962, 82–92

[93] Keesling J., “The group of homeomorphisms of a solenoid”, Trans. Am. Math. Soc., 172 (1972), 119–131 | DOI

[94] Eckmann B., “Social choice and topology, a case of pure and applied mathematics”, Expos. Math., 22:4 (2004), 385–393 | DOI

[95] Krupski P., “Means on solenoids”, Proc. Am. Math. Soc., 131:6 (2003), 1931–1933 | DOI

[96] Gumerov R. N., “On the existence of means on solenoids”, Lobachevskii J. Math., 17 (2005), 43–46

[97] Gumerov R. N., “Characters and coverings of compact groups”, Russ. Math., 58:4 (2014), 7–13 | DOI

[98] van Kampen E. R., “On almost periodic functions of constant absolute value”, J. London Math. Soc., s1–12:1 (1937), 3–6 | DOI

[99] Fort M. K. Jr., “Images of plane continua”, Am. J. Math., 81:3 (1959), 541–546 | DOI