Keywords: Lucas sequences, group determinants.
@article{UZKU_2021_163_3_a5,
author = {A. N. Abyzov},
title = {Fagnano's method for solving algebraic equations: its historical overview and development},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {304--348},
year = {2021},
volume = {163},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a5/}
}
TY - JOUR AU - A. N. Abyzov TI - Fagnano's method for solving algebraic equations: its historical overview and development JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2021 SP - 304 EP - 348 VL - 163 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a5/ LA - ru ID - UZKU_2021_163_3_a5 ER -
%0 Journal Article %A A. N. Abyzov %T Fagnano's method for solving algebraic equations: its historical overview and development %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2021 %P 304-348 %V 163 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a5/ %G ru %F UZKU_2021_163_3_a5
A. N. Abyzov. Fagnano's method for solving algebraic equations: its historical overview and development. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 3, pp. 304-348. http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a5/
[1] Fagnano G. C., Soluzione di quattro problemi analitici, Opere Matematiche, 2, Albrighi Segati, Milano–Roma–Napoli, 1911, 516 pp. (In Italian)
[2] Wieleitner H., History of Mathematics from Descartes to the Mid-19th Century, GIFML, M., 1960, 468 pp. (In Russian) | MR
[3] Dulaurens Fr., Specimina Mathematica, Paris, 1667
[4] Schneider I., “Der Mathematiker Abraham de Moivre (1667–1754)”, Archive for History of Exact Sciences, 5:3/4 (1968), 177–317 (In German) | DOI | MR | Zbl
[5] Haukkanen P., Merikoski J., Mustonen S., “Some polynomials associated with regular polygons”, Acta Univ. Sapientiae, Math., 6:2 (2014), 178–193 | DOI | MR | Zbl
[6] Savio D. Y., Suryanarayan E. R., “Chebychev polynomials and regular polygons”, Am. Math. Mon., 100:7 (1993), 657–661 | DOI | MR | Zbl
[7] Laughlin J.Mc., “Combinatorial identities deriving from the $n$-th power of a $2\times 2$ matrix”, Integers, 4 (2004), 1–15 | MR
[8] Eulero L., “De resolutione aequationum cuiusvis gradus” (1762–1763), Novi Comment. Acad. Sci. Imp. Petropolitanae, 9, Petropolis, 1764, 70–98 (In Latin)
[9] Kaddoura I., Mourad B., “On a class of matrices generated by certain generalized permutation matrices and applications”, Linear Multilinear Algebra, 67:10 (2018), 2117–2134 | DOI | MR
[10] Grunert J. A., “Die allgemeine Cardanische Formel”, Arch. Math. Phys., 40 (1863), 246–249 (In German)
[11] Blum-Smith B., Wood J., “Chords of an ellipse, Lucas polynomials, and Cubic Equations”, Am. Math. Mon., 127:8 (2020), 688–705 | DOI | MR | Zbl
[12] Solomon R., Abstract Algebra, Thompson Brooks/Cole, Belmont, 2003, 227 pp.
[13] Spearman B. K., Williams K. S., “DeMoivre's quintic and a theorem of Galois”, Far East J. Math. Sci., 1 (1999), 137–143 | MR | Zbl
[14] Borger R. L., “On DeMoivre's quintic”, Am. Math. Mon., 15:10 (1908), 171–174 | DOI | MR | Zbl
[15] Maistrova A. L., “Solving algebraic equations in L. Euler's works”, Historical and Mathematical Studies, 29, ed. Yushkevich A. P., Nauka, M., 1985, 189–199 (In Russian) | MR
[16] Valles F., Des formes imaginaires en algebre, Gauthier-Villars, Paris, 1873, 539 pp. (In French)
[17] Stedall J. A., From Cardano's Great Art to Lagrange's Reflections: Filling a Gap in the History of Algebra, Eur. Math. Soc., Zürich, 2011, 224 pp. | MR
[18] Dickson L. E., History of the Theory of Numbers, v. I, Divisibility and primality, Carnegie Inst., Washington, 1919, xii+486 pp. | MR | Zbl
[19] Girard A., Invention nouvelle en l'algebre, Amsterdam, 1629, 72 pp.
[20] Waring E., Miscellanea analytica de aequationibus algebraicis, et curvarum proprietatibus, Thurlbourn Woodyer, Cambridge, 1762, 206 pp. (In Latin)
[21] Sushkevich A. K., Fundamentals of Higher Algebra, Gostekhizdat, M.–L., 1941, 460 pp. (In Russian)
[22] Lobachevsky N. I., Lobachevsky N. I. Complete Collection of Works, v. 4, Essays on algebra. Algebra, or the calculus of finite quantities. Lowering the degree in a binominal equation when the exponent minus a unit is a multiple of 8, ed. Kagan V. F., Gostekhizdat, M.–L., 1948, 472 pp. (In Russian) | MR
[23] De Moivre A., “Aequationum quarundam potestatis tertiae, quintae, septimae, nonae, et superiorum, ad infinitum usque pergendo, in terminis finitis, ad instar regularum pro cubicis quae vocantur Cardani resolutio analytica”, Philos. Trans., 25:309 (1707), 2368–2371 (In Latin) | DOI
[24] Wituła R., Słota D., “Cardano's formula, square roots, Chebyshev polynomials and radicals”, J. Math. Anal. Appl., 363:2 (2010), 639–647 | DOI | MR | Zbl
[25] Dickson L. E., Elementary Theory of Equations, Wiley, N. Y., 1914, 196 pp. | MR | Zbl
[26] Dickson L. E., Linear Groups: With an Exposition of the Galois Field Theory, Teubner, Leipzig, 1901, x+312 pp. | Zbl
[27] Williams K. S., “A generalization of Cardan's solution of the cubic”, Math. Gaz., 46:357 (1962), 221–223 | DOI
[28] Lehmer D. H., “On the multiple solutions of the Pell equation”, Ann. Math., 30:1/4 (1928), 66–72 | DOI | MR | Zbl
[29] Euler L., Introduction to Analysis of the Infinite, v. 1, Fizmatgiz, M., 1961, 315 pp. (In Russian)
[30] Wituła R., Słota D., “Cauchy, Ferrers–Jackson and Chebyshev polynomials and identities for the powers of elements of some conjugate recurrence sequences”, Cent. Eur. J. Math., 4:3 (2006), 531–546 | DOI | MR | Zbl
[31] Kepler J., “Harmonice Mundi”, Opera Omnia, 5, Heyder Zimmer, Frankfurt, 1864, 75–327
[32] Kappraff J., Beyond Measure: A Guided Tour through Nature, Myth, and Number, World Sci. Publ., River Edge, N. J., 2002, xxx+582 pp. | MR | Zbl
[33] Gauss C. F., Works on the Number Theory, Izd. Akad. Nauk SSSR, M., 1959, 980 pp. (In Russian)
[34] Eisenstein G., “Application de l'algebre a l'arithmetique transcendante”, J. Reine Angew. Math., 29 (1845), 177–184 (In French) | DOI | MR | Zbl
[35] Liouville J., “Sur la loi de reciprocite dans la theorie des residus quadratiques”, J. Math. Pures Appl., 12 (1847), 95–96 (In French)
[36] Baumgart O., Lemmermeyer F., The Quadratic Reciprocity Law: A Collection of Classical Proofs, Birkhauser Springer, Cham–Heidelberg–N. Y.–Dordrecht–London, 2015, xiv+172 pp. | MR | Zbl
[37] Perrin R., “Item 1484”, L'Intermed. Math., 6 (1899), 76–77 (In French)
[38] Minton G. T., “Three approaches to a sequence problem”, Math. Mag., 84:1 (2011), 33–37 | DOI | MR | Zbl
[39] Schönemann T., “Theorie der symmetrischen Functionen der Wurzeln einer Gleichung. Allgemeine Sätze über Congruenzen nebst einigen Anwendungen derselben”, J. Reine Angew. Math., 19 (1839), 289–308 (In German) | MR | Zbl
[40] Shatunovskii S. O., On the Conditions for the Existence of $n$ Unequal Roots of Congruence of $n$-Degree Using a Simple Module, Tip.-Lit. Imp. Univ., Kazan, 1903, 19 pp. (In Russian)
[41] Arnold V. I., “On the matricial version of Fermat–Euler congruences”, Jpn. J. Math., 1 (2006), 1, 1–24 | DOI | MR
[42] Browder F. E., “The Lefschetz fixed point theorem and asymptotic fixed point theorems in partial differential equations and related topics”, Lecture Notes in Mathematics, 446, Springer-Verlag, N. Y., 1975, 96–122 | DOI | MR
[43] Peitgen H. O., “On the Lefschetz Number for Iterates of Continuous Mappings”, Proc. Am. Math. Soc., 54:1 (1976), 441–444 | DOI | MR | Zbl
[44] Janichen W., “Uber die Verallgemeinerung einer Gaussschen Formel aus der Theorie der hoheren Kongruenzen”, Sitzungsber. Berlin. Math. Ges., 20 (1921), 23–29 (In German) | Zbl
[45] Adams W. W., Shanks D., “Strong primality tests that are not sufficient”, Math. Comput., 39:159 (1982), 255–300 | DOI | MR | Zbl
[46] Vinberg E. B., “Fermat's little theorem and generalizations”, Mat. Prosveshchenie. Ser. 3, 2008, no. 12, 43–53 (In Russian)
[47] Zarelua A. V., “On matrix analogs of Fermat's little theorem”, Math. Notes, 79:6 (2006), 783–796 | DOI | DOI | MR | Zbl
[48] Jezierski J., Marzantowicz W., “Homotopy methods in topological fixed and periodic points theory”, Topological Fixed Point Theory and Its Applications, v. 3, ed. Gorniewicz L., Springer, Dordrecht, 2006, xii+319 pp. | MR
[49] Schur I., “Arithmetische Eigenschaften der Potenzsummen einer algebraischen Gleichung”, Compos. Math., 4 (1937), 432–444 (In German) | MR
[50] Smyth C. J., “A coloring proof of a generalisation of Fermat's little theorem”, Am. Math. Mon., 93:6 (1986), 469–471 | DOI | MR | Zbl
[51] Steinlein H., “Fermat's little theorem and Gauss congruence: Matrix versions and cyclic permutations”, Am. Math. Mon., 124:6 (2017), 548–553 | DOI | MR | Zbl
[52] Zarelua A. V., “On congruences for the traces of powers of some matrices”, Proc. Steklov Inst. Math., 263 (2008), 78–98 | DOI | MR | Zbl
[53] Beukers F., Houben M. R., Straub A., “Gauss congruences for rational functions in several variables”, Acta Arithmetica, 184:4 (2018), 341–362 | DOI | MR | Zbl
[54] Minton G. T., “Linear recurrence sequences satisfying congruence conditions”, Proc. Am. Math. Soc., 142:7 (2014), 2337–2352 | DOI | MR | Zbl
[55] Chebotarev N. G., “Samuil Osipovich Shatunovskii (on the occasion of the 10th anniversary of his death)”, Usp. Mat. Nauk, 1940, no. 7, 316–321 (In Russian)
[56] Lambek J., Lectures on Rings and Modules, Mir, M., 1971, 280 pp. (In Russian) | MR
[57] Sun Z.-H., “Cubic and quartic congruences modulo a prime”, J. Number Theory, 102:1 (2003), 41–89 | DOI | MR | Zbl
[58] Frobenius G., Theory of Group Characters and Representations, ONTI, Kharkiv, 1937, 214 pp. (In Russian)
[59] Johnson K. W., Group Matrices, Group Determinants and Representation Theory: The Mathematical Legacy of Frobenius, Lecture Notes in Mathematics, 2233, Springer Int. Publ., N. Y., 2019, 409 pp. | DOI | MR | Zbl
[60] Pen-Tung Sah A., “A uniform method of solving cubics and quartics”, Am. Math. Mon., 52:4 (1945), 202–206 | DOI | MR | Zbl