Contact and almost contact structures on the real extension of the Lobachevsky plane
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 3, pp. 291-303 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this article, we propose a group model $\mathbb{G}$ of a real extension of the Lobachevsky plane $\mathbb{H}^2 \times \mathbb{R}$. The group $\mathbb{G}$ is a Lie group of special-form matrices and a subgroup of the general linear group $GL(3, \mathbb{R})$. It is proved that, on the group model of the real extension of the Lobachevsky plane, there is a unique left-invariant almost contact metric structure with the Riemannian metric of the direct product that is invariant with respect to the isometry group. The concept of a linear connection compatible with the distribution is introduced. All left-invariant linear connections for which the tensors of the almost contact metric structure $(\eta, \xi, \varphi, g)$ are covariantly constant are found. Among the left-invariant differential $1$-forms, a canonical form defining a contact structure on $\mathbb{G}$ is distinguished. The left-invariant contact metric connections are found. There is a unique left-invariant connection for which all tensors of the almost contact metric structure and the canonical contact form are covariantly constant. It is proved that this connection is compatible with the contact distribution in the sense that a single geodesic tangent to the contact distribution passes through each point in each contact direction. Parametric equations of geodesics of the given connection are found. It is also established that the Levi-Civita connection of the Riemannian metric of the direct product is not a connection compatible with the contact distribution.
Mots-clés : Lie group
Keywords: contact structure, almost contact structure, left-invariant connection, contact geodesics.
@article{UZKU_2021_163_3_a4,
     author = {V. I. Pan'zhenskii and A. O. Rastrepina},
     title = {Contact and almost contact structures on the real extension of the {Lobachevsky} plane},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {291--303},
     year = {2021},
     volume = {163},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a4/}
}
TY  - JOUR
AU  - V. I. Pan'zhenskii
AU  - A. O. Rastrepina
TI  - Contact and almost contact structures on the real extension of the Lobachevsky plane
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2021
SP  - 291
EP  - 303
VL  - 163
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a4/
LA  - ru
ID  - UZKU_2021_163_3_a4
ER  - 
%0 Journal Article
%A V. I. Pan'zhenskii
%A A. O. Rastrepina
%T Contact and almost contact structures on the real extension of the Lobachevsky plane
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2021
%P 291-303
%V 163
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a4/
%G ru
%F UZKU_2021_163_3_a4
V. I. Pan'zhenskii; A. O. Rastrepina. Contact and almost contact structures on the real extension of the Lobachevsky plane. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 3, pp. 291-303. http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a4/

[1] Vershik A. M., Fadeev L. D., “Lagrangian mechanics in invariant form”, Problems of Theoretical Physics, eds. Veselov M. G. et al., Izd. LGU, L., 1975, 129–141 (In Russian)

[2] Vershik A. M., Gershkovich V. Ya., “Nonholonomic dynamical systems. Geometry of distributions and variational problems”, Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat. Fundam. Napravleniya, 16, 1987, 5–85 (In Russian) | Zbl

[3] Sachkov Yu.L., “Control theory on Lie groups”, J. Math. Sci., 156:3 (2009), 381–439 | DOI | MR | Zbl

[4] Agrachev A. A., “Topics in sub-Riemannian geometry”, Russ. Math. Surv., 71:6 (2016), 989–1019 | DOI | MR | MR | Zbl

[5] Scott P., The Geometries of 3-Manifolds, ed. Arnol'd V.I., Mir, M., 1986, 164 pp. (In Russian)

[6] Thurston W. P., The Geometry and Topology of Three-Manifolds, ed. Shvartsman O. V., MTsNMO, M., 2001, 312 pp. (In Russian)

[7] Pan'zhenskii V. I., Klimova T. R., “The contact metric connection on the Heisenberg group”, Russ. Math., 62:11 (2018), 45–52 | DOI | MR

[8] Panzhenskii V. I., Klimova T. R., “The contact metric connection with skew torsion”, Russ. Math., 63:11 (2019), 47–55 | DOI | MR

[9] Pan'zhenskii V. I., Rastrepina A. O., “The left-invariant contact metric structure on the Sol manifold”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 162, no. 1, 2020, 77–90 (In Russian) | DOI

[10] Blair D. E., Contact Manifolds in Riemannian Geometry, Springer, Berlin–N.Y., 1976, 148 pp. | DOI | MR | Zbl

[11] Kirichenko V. F., Differential-Geometric Structures on Manifolds, Pechatnyi Dom, Odessa, 2013, 458 pp. (In Russian)