Mots-clés : large gradients, error estimation.
@article{UZKU_2021_163_3_a2,
author = {N. A. Zadorin},
title = {Analysis of formulas for numerical differentiation of functions with large gradients on a {Bakhvalov} mesh},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {261--275},
year = {2021},
volume = {163},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a2/}
}
TY - JOUR AU - N. A. Zadorin TI - Analysis of formulas for numerical differentiation of functions with large gradients on a Bakhvalov mesh JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2021 SP - 261 EP - 275 VL - 163 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a2/ LA - ru ID - UZKU_2021_163_3_a2 ER -
%0 Journal Article %A N. A. Zadorin %T Analysis of formulas for numerical differentiation of functions with large gradients on a Bakhvalov mesh %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2021 %P 261-275 %V 163 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a2/ %G ru %F UZKU_2021_163_3_a2
N. A. Zadorin. Analysis of formulas for numerical differentiation of functions with large gradients on a Bakhvalov mesh. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 3, pp. 261-275. http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a2/
[1] Bakhvalov N. S., “The optimization of methods of solving boundary value problems with a boundary layer”, USSR Comput. Math. Math. Phys., 9:4 (1969), 139–166 | DOI | MR
[2] Shishkin G. I., Grid Approximations of Singular Perturbation Elliptic and Parabolic Equations, Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 1992, 233 pp. (In Russian)
[3] Zadorin A. I., Zadorin N. A., “Spline interpolation on a uniform grid for functions with a boundary-layer component”, Comput. Math. Math. Phys., 50:2 (2010), 211–223 | DOI | MR | Zbl
[4] Kopteva N. V., Stynes M., “Approximation of derivatives in a convection-diffusion two-point boundary value problem”, Appl. Numer. Math., 39 (2001), 47–60 | DOI | MR | Zbl
[5] Shishkin G. I., “Approximations of solutions and derivatives for a singularly perturbed elliptic convection-diffusion equations”, Math. Proc. R. Ir. Acad., 103A:2 (2003), 169–201 | DOI | MR | Zbl
[6] Zadorin A. I., “Analysis of numerical differentiation formulas in a boundary layer on a Shishkin grid”, Numer. Anal. Appl., 11:3 (2018), 193–203 | DOI | DOI | MR | Zbl
[7] Zadorin A. I., Zadorin N. A., “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Sib. Èlektron. Mat. Izv., 9 (2012), 445–455 | MR | Zbl
[8] Il'in A.M., “Differencing scheme for a differential equation with a small parameter affecting the highest derivative”, Math. Notes, 6:2 (1969), 596–602 | DOI
[9] Zadorin A., Tikhovskaya S., “Formulas of numerical differentiation on a uniform mesh for functions with the exponential boundary layer”, Int. J. Numer. Anal. Model., 16:4 (2019), 590–608 | MR | Zbl
[10] Il'in V.P., Zadorin A. I., “Adaptive formulas of numerical differentiation of functions with large gradients”, J. Phys.: Conf. Ser., 1260 (2019), 042003, 1–7 | DOI | MR
[11] Blatov I. A., Zadorin A. I., Kitaeva E. V., “An application of the exponential spline for the approximation of a function and its derivatives in the presence of a boundary layer”, J. Phys.: Conf. Ser., 1050 (2018), 012012, 1–7 | DOI | MR
[12] Blatov I. A., Zadorin A. I., Kitaeva E. V., “Approximation of a function and its derivatives on the basis of cubic spline interpolation in the presence of a boundary layer”, Comput. Math. Math. Phys., 59:3 (2019), 343–354 | DOI | MR | Zbl
[13] Linß T., “The necessity of Shishkin decompositions”, Appl. Math. Lett., 14:7 (2001), 891–896 | DOI | MR | Zbl
[14] Linß T., Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems, Springer, Berlin, 2010, 233 pp. | MR | Zbl
[15] Blatov I. A., Zadorin N. A., “Interpolation on the Bakhvalov mesh in the presence of an exponential boundary layer”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 161, no. 4, 2019, 497–508 (In Russian) | DOI | DOI | MR