Convergence of an implicit difference scheme for the problem of saturated filtration consolidation with a limiting gradient
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 3, pp. 250-260
Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
This work is devoted to the study of the convergence of an implicit difference scheme for a one-dimensional initial-boundary problem that simulates the process of filtration consolidation with a limiting gradient. From a mathematical point of view, this model is a system of partial differential equations for the displacements of an elastic medium and fluid pressure. In addition, the equation for pressure is degenerate, with nonlinearity in the spatial operator, which generates a non-smooth solution. In this regard, the study of the convergence was carried out under minimal conditions on the smoothness of the initial data. It was based on obtaining a number of a priori estimates that allow, using the monotonicity method, to establish the convergence of piecewise constant completions of the difference solution to a generalized solution of the problem. The spatial operator was approximated using the method of summation identities.
Mots-clés :
filtration, filtration consolidation
Keywords: difference schemes, difference scheme convergence.
Keywords: difference schemes, difference scheme convergence.
@article{UZKU_2021_163_3_a1,
author = {V. L. Gnedenkova and M. F. Pavlova and E. V. Rung},
title = {Convergence of an implicit difference scheme for the problem of saturated filtration consolidation with a limiting gradient},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {250--260},
publisher = {mathdoc},
volume = {163},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a1/}
}
TY - JOUR AU - V. L. Gnedenkova AU - M. F. Pavlova AU - E. V. Rung TI - Convergence of an implicit difference scheme for the problem of saturated filtration consolidation with a limiting gradient JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2021 SP - 250 EP - 260 VL - 163 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a1/ LA - ru ID - UZKU_2021_163_3_a1 ER -
%0 Journal Article %A V. L. Gnedenkova %A M. F. Pavlova %A E. V. Rung %T Convergence of an implicit difference scheme for the problem of saturated filtration consolidation with a limiting gradient %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2021 %P 250-260 %V 163 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a1/ %G ru %F UZKU_2021_163_3_a1
V. L. Gnedenkova; M. F. Pavlova; E. V. Rung. Convergence of an implicit difference scheme for the problem of saturated filtration consolidation with a limiting gradient. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 3, pp. 250-260. http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a1/