Convergence of an implicit difference scheme for the problem of saturated filtration consolidation with a limiting gradient
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 3, pp. 250-260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This work is devoted to the study of the convergence of an implicit difference scheme for a one-dimensional initial-boundary problem that simulates the process of filtration consolidation with a limiting gradient. From a mathematical point of view, this model is a system of partial differential equations for the displacements of an elastic medium and fluid pressure. In addition, the equation for pressure is degenerate, with nonlinearity in the spatial operator, which generates a non-smooth solution. In this regard, the study of the convergence was carried out under minimal conditions on the smoothness of the initial data. It was based on obtaining a number of a priori estimates that allow, using the monotonicity method, to establish the convergence of piecewise constant completions of the difference solution to a generalized solution of the problem. The spatial operator was approximated using the method of summation identities.
Mots-clés : filtration, filtration consolidation
Keywords: difference schemes, difference scheme convergence.
@article{UZKU_2021_163_3_a1,
     author = {V. L. Gnedenkova and M. F. Pavlova and E. V. Rung},
     title = {Convergence of an implicit difference scheme for the problem of saturated filtration consolidation with a limiting gradient},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {250--260},
     year = {2021},
     volume = {163},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a1/}
}
TY  - JOUR
AU  - V. L. Gnedenkova
AU  - M. F. Pavlova
AU  - E. V. Rung
TI  - Convergence of an implicit difference scheme for the problem of saturated filtration consolidation with a limiting gradient
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2021
SP  - 250
EP  - 260
VL  - 163
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a1/
LA  - ru
ID  - UZKU_2021_163_3_a1
ER  - 
%0 Journal Article
%A V. L. Gnedenkova
%A M. F. Pavlova
%A E. V. Rung
%T Convergence of an implicit difference scheme for the problem of saturated filtration consolidation with a limiting gradient
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2021
%P 250-260
%V 163
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a1/
%G ru
%F UZKU_2021_163_3_a1
V. L. Gnedenkova; M. F. Pavlova; E. V. Rung. Convergence of an implicit difference scheme for the problem of saturated filtration consolidation with a limiting gradient. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 3, pp. 250-260. http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a1/

[1] Kadyrov F. M., Kosterin A. V., Skvortsov E. V., “Plane problem of filtration consolidation for an elastic half-space with discontinuous initial conditions”, J. Appl. Mech. Tech. Phys., 57:6 (2016), 1076–1082 | DOI | MR | Zbl

[2] Zaretsky Yu.K., The Theory of Soil Consolidation, Nauka, M., 1967, 270 pp. (In Russian)

[3] Nikolaevskii V. N., Mechanics of Porous and Cracked Media, Nedra, M., 1984, 232 pp. (In Russian)

[4] Biot M. A., “Mechanics of deformation and acoustic propagation in porous media”, J. Appl. Phys., 33:4 (1962), 1482–1498 | DOI | MR | Zbl

[5] Egorov A. G., Kosterin A. V., Skvortsov E. V., Consolidation and Acoustic Waves in Saturated Porous Media, Izd. Kazan. Univ., Kazan, 1990, 102 pp. (In Russian)

[6] Pavlova M. F., Rung E. V., “On the solvability of the problem of saturated-unsaturated filtration consolidation”, Differ. Equations, 48:7 (2012), 990–1004 | DOI | MR | Zbl

[7] Pavlova M. F., Rung E. V., “On the existence of a generalized solution of the saturated-unsaturated filtration problem”, Diff. Equat., 54:3 (2018), 352–362 | DOI | MR | Zbl

[8] Dautov R. Z., Drobotenko M. I., Lyashko A. D., “Investigation of the well-posedness of the generalized solution of the filtration consolidation problem”, Differ. Equations, 33:4 (1997), 518–525 | MR | Zbl

[9] Diersch H.-J.G., Perrochet P., “On the primary variable switching technique for simulating unsaturated-saturated flows”, Adv. Water Resour., 23:3 (1999), 271–301 | DOI

[10] Akhtareev A. A., Dautov R. Z., “Mixed variable technique for simulating unsaturated-saturated flows”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 149, no. 4, 2007, 58–72 (In Russian)

[11] Williams G. A., Miller C. T., Kelley C. T., “Transformation approaches for simulating flow in variably saturated porous media”, Water Resour. Res., 36:4 (2000), 923–934 | DOI

[12] Lions J.-L., Some Methods of Solving Nonlinear Boundary Value Problems, Mir, M., 1972, 587 pp. (In Russian)