Keywords: difference schemes, difference scheme convergence.
@article{UZKU_2021_163_3_a1,
author = {V. L. Gnedenkova and M. F. Pavlova and E. V. Rung},
title = {Convergence of an implicit difference scheme for the problem of saturated filtration consolidation with a limiting gradient},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {250--260},
year = {2021},
volume = {163},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a1/}
}
TY - JOUR AU - V. L. Gnedenkova AU - M. F. Pavlova AU - E. V. Rung TI - Convergence of an implicit difference scheme for the problem of saturated filtration consolidation with a limiting gradient JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2021 SP - 250 EP - 260 VL - 163 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a1/ LA - ru ID - UZKU_2021_163_3_a1 ER -
%0 Journal Article %A V. L. Gnedenkova %A M. F. Pavlova %A E. V. Rung %T Convergence of an implicit difference scheme for the problem of saturated filtration consolidation with a limiting gradient %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2021 %P 250-260 %V 163 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a1/ %G ru %F UZKU_2021_163_3_a1
V. L. Gnedenkova; M. F. Pavlova; E. V. Rung. Convergence of an implicit difference scheme for the problem of saturated filtration consolidation with a limiting gradient. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 3, pp. 250-260. http://geodesic.mathdoc.fr/item/UZKU_2021_163_3_a1/
[1] Kadyrov F. M., Kosterin A. V., Skvortsov E. V., “Plane problem of filtration consolidation for an elastic half-space with discontinuous initial conditions”, J. Appl. Mech. Tech. Phys., 57:6 (2016), 1076–1082 | DOI | MR | Zbl
[2] Zaretsky Yu.K., The Theory of Soil Consolidation, Nauka, M., 1967, 270 pp. (In Russian)
[3] Nikolaevskii V. N., Mechanics of Porous and Cracked Media, Nedra, M., 1984, 232 pp. (In Russian)
[4] Biot M. A., “Mechanics of deformation and acoustic propagation in porous media”, J. Appl. Phys., 33:4 (1962), 1482–1498 | DOI | MR | Zbl
[5] Egorov A. G., Kosterin A. V., Skvortsov E. V., Consolidation and Acoustic Waves in Saturated Porous Media, Izd. Kazan. Univ., Kazan, 1990, 102 pp. (In Russian)
[6] Pavlova M. F., Rung E. V., “On the solvability of the problem of saturated-unsaturated filtration consolidation”, Differ. Equations, 48:7 (2012), 990–1004 | DOI | MR | Zbl
[7] Pavlova M. F., Rung E. V., “On the existence of a generalized solution of the saturated-unsaturated filtration problem”, Diff. Equat., 54:3 (2018), 352–362 | DOI | MR | Zbl
[8] Dautov R. Z., Drobotenko M. I., Lyashko A. D., “Investigation of the well-posedness of the generalized solution of the filtration consolidation problem”, Differ. Equations, 33:4 (1997), 518–525 | MR | Zbl
[9] Diersch H.-J.G., Perrochet P., “On the primary variable switching technique for simulating unsaturated-saturated flows”, Adv. Water Resour., 23:3 (1999), 271–301 | DOI
[10] Akhtareev A. A., Dautov R. Z., “Mixed variable technique for simulating unsaturated-saturated flows”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 149, no. 4, 2007, 58–72 (In Russian)
[11] Williams G. A., Miller C. T., Kelley C. T., “Transformation approaches for simulating flow in variably saturated porous media”, Water Resour. Res., 36:4 (2000), 923–934 | DOI
[12] Lions J.-L., Some Methods of Solving Nonlinear Boundary Value Problems, Mir, M., 1972, 587 pp. (In Russian)