Numerical simulation of experiments on determining the type of initial anisotropy of an elastic material
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 2, pp. 214-225 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The concept of canonical axes of anisotropy of the material, in which the largest number of elements of the elastic compliance tensor is equal to zero, is introduced. A program of experiments that allows one to determine the type of an anisotropic material without finding all the components of the elastic compliance tensor in an arbitrary laboratory coordinate system and, simultaneously, to detect the position of the canonical axes of anisotropy in the material is developed. A program of mechanical experiments is proposed to identify the type of initial elastic anisotropy of a material based on the results of experiments in the canonical axes of anisotropy for the case when they coincide with the axes of the laboratory coordinate system. Computer numerical simulation of the experiments is performed. The influence of experimental measurement errors on the identification results is investigated. It is shown that the developed criteria for identifying the type of material are applicable in the presence of measurement errors.
Keywords: anisotropic materials, elastic properties, program of experiments.
Mots-clés : identification
@article{UZKU_2021_163_2_a7,
     author = {D. V. Khristich and D. A. Sukhorukov and M. Yu. Sokolova},
     title = {Numerical simulation of experiments on determining the type of initial anisotropy of an elastic material},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {214--225},
     year = {2021},
     volume = {163},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a7/}
}
TY  - JOUR
AU  - D. V. Khristich
AU  - D. A. Sukhorukov
AU  - M. Yu. Sokolova
TI  - Numerical simulation of experiments on determining the type of initial anisotropy of an elastic material
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2021
SP  - 214
EP  - 225
VL  - 163
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a7/
LA  - ru
ID  - UZKU_2021_163_2_a7
ER  - 
%0 Journal Article
%A D. V. Khristich
%A D. A. Sukhorukov
%A M. Yu. Sokolova
%T Numerical simulation of experiments on determining the type of initial anisotropy of an elastic material
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2021
%P 214-225
%V 163
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a7/
%G ru
%F UZKU_2021_163_2_a7
D. V. Khristich; D. A. Sukhorukov; M. Yu. Sokolova. Numerical simulation of experiments on determining the type of initial anisotropy of an elastic material. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 2, pp. 214-225. http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a7/

[1] Annin B. D., Ostrosablin N. I., “Anisotropy of elastic properties of materials”, J. Appl. Mech. Tech. Phys., 49:6 (2008), 998–1014 | DOI

[2] Markin A. A., Sokolova M.Yu., Thermomechanics of Elastoplastic Deformation, FIZMATLIT, M., 2013, 320 pp. (In Russian)

[3] Sirotin Yu.I., Shaskol'skaya M. P., Fundamentals of Crystal Physics, Nauka, M., 1979, 640 pp. (In Russian)

[4] Tsvelodub I.Yu., “Determining the elastic characteristics of homogenous anisotropic bodies”, J. Appl. Mech. Tech. Phys., 35:3 (1994), 455–458 | DOI

[5] Hayes M. A., “A simple statical approach to the measurement of the elastic constants in anisotropic media”, J. Mater. Sci., 4:1 (1969), 10–14 | DOI

[6] Jarić J. P., “On the conditions for the existence of a plane of symmetry for anisotropic elastic material”, Mech. Res. Commun., 21:2 (1994), 153–174 | DOI | Zbl

[7] Norris A. N., “On the acoustic determination of the elastic moduli of anisotropic solids and acoustic conditions for the existence of symmetry planes”, Q. J. Mech. Appl. Math., 42:3 (1989), 413–426 | DOI | Zbl

[8] Ostapovich K. V., Trusov P. V., “On elastic anisotropy: Symmetry identification”, Mekh. Kompoz. Mater. Konstr., 22:1 (2016), 69–84 (In Russian)

[9] Sokolova M.Yu., Khristich D. V., “Program of experiments to determine the type of initial elastic anisotropy of material”, J. Appl. Mech. Tech. Phys., 56:5 (2015), 913–919 | DOI | Zbl

[10] Khristich D., Toan N. S., Sukhorukov D., “Determining the type of initial anisotropy of elastic material from a series of experiments”, IOP Conf. Ser.: J. Phys., 1479:1 (2020), 012139, 1–12 | DOI

[11] Khristich D. V., “A criterion for experimental identification of isotropic and cubic materials”, Izv. Tul. Gos. Univ. Estestv. Nauki, 2012, no. 3, 110–118 (In Russian)

[12] Khristich D. V., Kayumov R. A., Mukhamedova I. Z., “A program of experiments for determination of the main axes of anisotropy in a material”, Izv. Kazan. Gos. Arkhit.-Stroit. Univ., 2012, no. 3, 216–224 (In Russian)

[13] Khristich D. V., “A criterion for experimental identification of rhombic, monoclinic, and triclinic materials”, Izv. Tul. Gos. Univ. Estestv. Nauki, 2013, no. 3, 166–178 (In Russian)

[14] Khristich D. V., “A criterion for experimental identification of hexagonal, trigonal, and tetragonal materials”, Vestn. Kazan. Gos. Tekh. Univ. im. A.N. Tupoleva, 2013, no. 2, 67–72 (In Russian)

[15] Khristich D. V., “On the problem of identification of the main axes of anisotropy in a material”, Izv. Tul. Gos. Univ. Estestv. Nauki, 2014, no. 2, 203–213 (In Russian)