Structure and relations of a multi-level mathematical model for describing microcracks formation during polycrystals deformation
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 2, pp. 197-213
Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
The mechanical behavior of parts is significantly affected by the material's internal defective structure and its evolution. The paper aims to build a complex physically based mathematical model for describing the behavior of metals in the deformation and destruction process. The main deformation mechanisms of metals and alloys are considered. The mechanism and criterion for the microcrack nucleation, as well as a method for microcracks describing, are outlined. The structure and main relations of the developed model are presented, including a description of the most significant mechanisms carriers evolution implemented at each structural-scale level. A submodel of the evolution of dislocation densities during deformation due to such mechanisms as the new dislocations generation and opposite dislocations annihilation on close slipping systems is described. The algorithm for implementing the model and the results of modeling the dislocation structure evolution are presented. The multi-level approach based on the crystal plasticity and the introduction of internal variables is found to be sufficiently effective for describing both the propagation and nucleation of microcracks in metals.
Keywords:
mathematical modeling, physical plasticity theories, crystal plasticity, deformation of polycrystalline materials, dislocation densities, microcrack nucleation, damage.
@article{UZKU_2021_163_2_a6,
author = {K. A. Kurmoiartseva and N. V. Kotelnikova and P. S. Volegov},
title = {Structure and relations of a multi-level mathematical model for~describing microcracks formation during polycrystals deformation},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {197--213},
publisher = {mathdoc},
volume = {163},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a6/}
}
TY - JOUR AU - K. A. Kurmoiartseva AU - N. V. Kotelnikova AU - P. S. Volegov TI - Structure and relations of a multi-level mathematical model for describing microcracks formation during polycrystals deformation JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2021 SP - 197 EP - 213 VL - 163 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a6/ LA - ru ID - UZKU_2021_163_2_a6 ER -
%0 Journal Article %A K. A. Kurmoiartseva %A N. V. Kotelnikova %A P. S. Volegov %T Structure and relations of a multi-level mathematical model for describing microcracks formation during polycrystals deformation %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2021 %P 197-213 %V 163 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a6/ %G ru %F UZKU_2021_163_2_a6
K. A. Kurmoiartseva; N. V. Kotelnikova; P. S. Volegov. Structure and relations of a multi-level mathematical model for describing microcracks formation during polycrystals deformation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 2, pp. 197-213. http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a6/