@article{UZKU_2021_163_2_a6,
author = {K. A. Kurmoiartseva and N. V. Kotelnikova and P. S. Volegov},
title = {Structure and relations of a multi-level mathematical model for~describing microcracks formation during polycrystals deformation},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {197--213},
year = {2021},
volume = {163},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a6/}
}
TY - JOUR AU - K. A. Kurmoiartseva AU - N. V. Kotelnikova AU - P. S. Volegov TI - Structure and relations of a multi-level mathematical model for describing microcracks formation during polycrystals deformation JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2021 SP - 197 EP - 213 VL - 163 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a6/ LA - ru ID - UZKU_2021_163_2_a6 ER -
%0 Journal Article %A K. A. Kurmoiartseva %A N. V. Kotelnikova %A P. S. Volegov %T Structure and relations of a multi-level mathematical model for describing microcracks formation during polycrystals deformation %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2021 %P 197-213 %V 163 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a6/ %G ru %F UZKU_2021_163_2_a6
K. A. Kurmoiartseva; N. V. Kotelnikova; P. S. Volegov. Structure and relations of a multi-level mathematical model for describing microcracks formation during polycrystals deformation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 2, pp. 197-213. http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a6/
[1] Griffith A. A., “The phenomena of rupture and flow in solids”, Philos. Trans. R. Soc., A, 221:582–593 (1921), 163–198 | DOI | Zbl
[2] Orowan E., “Energy criteria of fracture”, Welding J. Res. Suppl., 34:3 (1955), 157–160
[3] Irwin G. R., “Analysis of stresses and strain near the end of crack traversing a plate”, J. Appl. Mech., 24:3 (1957), 361–364 | DOI
[4] Parton V. Z., Morozov E. M., Mechanics of Elastoplastic Fracture, Nauka, M., 1985, 502 pp. (In Russian)
[5] Pestrikov V. M., Morozov E. M., Fracture Mechanics. A Course of Lectures, TsOP “Professiya”, St. Petersburg, 2012, 552 pp. (In Russian)
[6] Taheri S., Vincent L., Le-Roux J.-C., “Classification of metallic alloys for fatigue damage accumulation: A conservative model under strain control for 304 stainless steels”, Int. J. Fatigue, 70 (2015), 73–84 | DOI
[7] Li L., Flores-Johnson E.A, Shen L., Proust G., “Effects of heat treatment and strain rate on the microstructure and mechanical properties of 6061 Al alloy”, Int. J. Damage Mech., 25:1 (2015), 26–41 | DOI
[8] Cao T. S., Vachey C., Montmitonnet P., Bouchard P.-O., “Comparison of reduction ability between multi-stage cold drawing and rolling of stainless steel wire – Experimental and numerical investigations of damage”, J. Mater. Process. Technol., 217 (2015), 30–47 | DOI
[9] Brünig M., Gerke S., Schmidt M., “Damage and failure at negative stress triaxialities: Experiments, modeling and numerical simulations”, Int. J. Plast., 102 (2018), 70–82 | DOI
[10] Tang X. S., Wei T. T., “Microscopic inhomogeneity coupled with macroscopic homogeneity: A localized zone of energy density for fatigue crack growth”, Int. J. Fatigue, 70 (2015), 270–277 | DOI
[11] Volegov P. S., Gribov D. S., Trusov P. V., “Damage and fracture: Review of experimental studies”, Phys. Mesomech., 19:3 (2016), 319–331 | DOI
[12] Kachanov L. M., Fundamentals of Fracture Mechanics, Nauka, M., 1974, 312 pp. (In Russian)
[13] Rabotnov Yu.N., Introduction to Fracture Mechanics, Nauka, M., 1987, 388 pp. (In Russian)
[14] Walton C. A., Horstemeyer M. F., Martin H. J., Francis D. K., “Formulation of a macroscale corrosion damage internal state variable model”, Int. J. Solids Struct., 51 (2014), 1235–1245 | DOI
[15] Martínez-Pañeda E., Betegón C., “Modeling damage and fracture within strain-gradient plasticity”, Int. J. Solids Struct., 59 (2015), 208–215 | DOI
[16] Martínez-Pañeda E., Niordson C., “On fracture in finite strain gradient plasticity”, Int. J. Plast., 80 (2016), 154–167 | DOI
[17] Aslan O., Forest S., “Crack growth modelling in single crystals based on higher order continua”, Comput. Materials Sci., 45 (2009), 756–761 | DOI
[18] Lemaitre J., “A continuous damage mechanics model for ductile fracture”, J. Eng. Mater. Technol., 77 (1985), 335–344 | DOI
[19] Horstemeyer M. F., Bammann D. J., “Historical review of internal state variable theory for inelasticity”, Int. J. Plast., 26:9 (2010), 1310–1334 | DOI | Zbl
[20] Maugin G. A., “The saga of internal variables of state in continuum thermo-mechanics (1893–2013)”, Mech. Res. Commun., 69 (2015), 79–86 | DOI
[21] Volegov P. S., Gribov D. S., Trusov P. V., “Damage and fracture: Crystal plasticity models”, Phys. Mesomech., 20:2 (2017), 174–184 | DOI
[22] Trusov P. V., Shveikin A. I., Multilevel Models of Mono- and Polycrystalline Materials: Theory, Algorithms, Examples of Application, Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2019, 605 pp. (In Russian) | DOI
[23] Hirth J. P., Lothe J., Theory of Dislocations, Atomizdat, M., 1972, 600 pp. (In Russian)
[24] Vladimirov V. I., The Physical Nature of Metals Fracture, Metallurgiya, M., 1984, 280 pp. (In Russian)
[25] Pozdeev A. A., Trusov P. V., Nyashin Yu.I., Large Elastoplastic Deformations: Theory, Algorithms, Applications, Nauka, M., 1986, 232 pp. (In Russian)
[26] Ivanova V. S., Gordienko L. K., Geminov V. N., The Role of Dislocations in the Hardening and Fracture of Metals, Nauka, M., 1965, 180 pp. (In Russian)
[27] Finkel' V.M., Physics of Fracture, Metallurgiya, M., 1970, 375 pp. (In Russian)
[28] Stroh A. N., “The formation of cracks as a result of plastic flow”, Proc. R. Soc. London, Ser. A, 223 (1954), 404–414 | DOI | Zbl