Mots-clés : Cauchy stresses, moment stresses
@article{UZKU_2021_163_2_a5,
author = {A. O. Vatulyan and S. A. Nesterov},
title = {Solution of the problem of gradient thermoelasticity for a coated strip},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {181--196},
year = {2021},
volume = {163},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a5/}
}
TY - JOUR AU - A. O. Vatulyan AU - S. A. Nesterov TI - Solution of the problem of gradient thermoelasticity for a coated strip JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2021 SP - 181 EP - 196 VL - 163 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a5/ LA - ru ID - UZKU_2021_163_2_a5 ER -
%0 Journal Article %A A. O. Vatulyan %A S. A. Nesterov %T Solution of the problem of gradient thermoelasticity for a coated strip %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2021 %P 181-196 %V 163 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a5/ %G ru %F UZKU_2021_163_2_a5
A. O. Vatulyan; S. A. Nesterov. Solution of the problem of gradient thermoelasticity for a coated strip. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 2, pp. 181-196. http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a5/
[1] Toupin R. A., “Elastic materials with couple stresses”, Arch. Ration. Mech. Anal., 11 (1962), 385–414 | DOI | Zbl
[2] Mindlin R. D., “Micro-structure in linear elasticity”, Arch. Ration. Mech. Anal., 16 (1964), 51–78 | DOI | Zbl
[3] Ahmadi G., Firoozbakhsh K., “First strain gradient theory of thermoelasticity”, Int. J. Solids Struct., 11:3 (1975), 339–345 | DOI | Zbl
[4] Altan B. S., Aifantis E. C., “On some aspects in the special theory of gradient elasticity”, J. Mech. Behav. Mater., 8:3 (1997), 231–282 | DOI
[5] Lurie S. A., Fam T., Solyaev Yu.O., “Gradient model of thermoelasticity and its applications to the modeling of thin-layered composite structures”, Mekh. Kompoz. Mater. Konstr., 18:3 (2012), 440–449 (in Russian)
[6] Aifantis K., Askes H., “Gradient elasticity with interfaces as surfaces of discontinuity for the strain gradient”, J. Mech. Behav. Mater., 18:4 (2007), 283–306 | DOI
[7] Lurie S. A., Solyaev Yu.O., Rabinskii L. N., Kondratova Yu.N., Volov M. I., “Simulation of the stress-strain state of thin composite coatings based on solutions of the plane problem of strain-gradient elasticity for a layer”, Vestn. Permsk. Nats. Issled. Politekh. Univ. Mekh., 2013, no. 1, 161–181 (in Russian)
[8] Zhang N. H., Meng W. L., Aifantis E. C., “Elastic bending analysis of bilayered beams containing a gradient layer by an alternative two-variable method”, Compos. Struct., 93:12 (2011), 3130–3139 | DOI
[9] Li A., Zhou Sh., Zhou Sh., Wang B., “A size-dependent bilayered microbeam model based on strain gradient elasticity theory”, Compos. Struct., 108 (2014), 259–266 | DOI
[10] Li A., Zhou Sh., Zhou Sh., Wang B., “A size-dependent model for bi-layered Kirchhoff micro-plate”, Compos. Struct., 113 (2014), 272–280 | DOI
[11] Fu G., Zhou Sh., Qi L., “The size-dependent static bending of a partially covered laminated microbeam”, Int. J. Mech. Sci., 152 (2019), 411–419 | DOI
[12] Sadeghi H., Baghani M., Naghdabadi R., “Strain gradient thermoelasticity of functionally graded cylinders”, Sci. Iran., Trans. B, 21:4 (2014), 1415–1423
[13] Papargyri-Beskou S., Tsinopoulos S., “Lame's strain potential method for plane gradient elasticity problems”, Arch. Appl. Mech., 85:9–10 (2015), 1399–1419 | DOI | Zbl
[14] Boley B., Weiner J., Theory of Thermal Stresses, Mir, M., 1964, 517 pp. (in Russian)
[15] Kovalenko A. D., Thermoelasticity, Yshch. Shk., Kiev, 1975, 216 pp. (in Russian)
[16] Krylov V. I., Approximate Calculation of Integrals, Nauka, M., 1967, 500 pp. (in Russian)
[17] Filon L. N.G., “III. — On a quadrature formula for trigonometric integrals”, Proc. R. Soc. Edinburgh, 49 (1930), 38–47 | DOI
[18] Vishik M. I., Lyusternik L. A., “Regular degeneration and boundary layer for linear differential equations with small parameter”, Usp. Mat. Nauk, 12:5 (1957), 3–122 (in Russian) | Zbl