Solution of the problem of gradient thermoelasticity for a coated strip
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 2, pp. 181-196 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The formulation of a one-parameter problem of gradient thermoelasticity for the “thermal protective coating – substrate” system which is modeled by a composite strip is presented. The lower boundary of the strip is rigidly clamped and maintained at zero temperature, and on the upper boundary, free of stresses, a heat flux localized over small segment acts, while the rest of the upper boundary is thermally insulated. First, the Fourier transform in the horizontal coordinate is applied to the equilibrium and heat conduction equations and the boundary conditions. After finding the temperature transformant, the transformants of horizontal and vertical displacement are determined. The Vishik–Lyusternik's asymptotic approach is used to find the transformants of displacements, taking into account the presence of boundary layer solutions in the vicinity of the strip boundaries. The numerical inversion of the transformants is based on the compound quadrature formula of Philon. A comparison is made of the distribution of Cauchy displacements and stresses obtained on the basis of solving the problem in the classical formulation and in the gradient formulation. It is found that a change in the gradient parameter insignificantly affects the distribution of displacements, but strongly on the distribution of Cauchy stresses and moment stresses. The displacements are continuous, equal to zero in the containment, have certain symmetry when distributed along the horizontal coordinate, and attenuate with distance from the source. Near the termination, the Cauchy stresses decrease exponentially to zero in accordance with the boundary conditions, experience a jump on the mate line. Since displacements and deformations are continuous on the line of conjugation of the strips, due to the jump in thermomechanical characteristics, a Cauchy stress jump occurs in the vicinity of the line of conjugation of the strips. The magnitude of the Cauchy stress jump also depends on the ratio between the gradient parameter and the coating thickness. It is revealed that when the thickness of the coating is less than two gradient parameters, the stress jump changes exponentially and then goes to a stationary value. The moment stresses are continuous and peak at the interface of the materials.
Keywords: strip, coating, gradient thermoelasticity, boundary layer, Vishik–Lyusternik's method, stress jump.
Mots-clés : Cauchy stresses, moment stresses
@article{UZKU_2021_163_2_a5,
     author = {A. O. Vatulyan and S. A. Nesterov},
     title = {Solution of the problem of gradient thermoelasticity for a coated strip},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {181--196},
     year = {2021},
     volume = {163},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a5/}
}
TY  - JOUR
AU  - A. O. Vatulyan
AU  - S. A. Nesterov
TI  - Solution of the problem of gradient thermoelasticity for a coated strip
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2021
SP  - 181
EP  - 196
VL  - 163
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a5/
LA  - ru
ID  - UZKU_2021_163_2_a5
ER  - 
%0 Journal Article
%A A. O. Vatulyan
%A S. A. Nesterov
%T Solution of the problem of gradient thermoelasticity for a coated strip
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2021
%P 181-196
%V 163
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a5/
%G ru
%F UZKU_2021_163_2_a5
A. O. Vatulyan; S. A. Nesterov. Solution of the problem of gradient thermoelasticity for a coated strip. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 2, pp. 181-196. http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a5/

[1] Toupin R. A., “Elastic materials with couple stresses”, Arch. Ration. Mech. Anal., 11 (1962), 385–414 | DOI | Zbl

[2] Mindlin R. D., “Micro-structure in linear elasticity”, Arch. Ration. Mech. Anal., 16 (1964), 51–78 | DOI | Zbl

[3] Ahmadi G., Firoozbakhsh K., “First strain gradient theory of thermoelasticity”, Int. J. Solids Struct., 11:3 (1975), 339–345 | DOI | Zbl

[4] Altan B. S., Aifantis E. C., “On some aspects in the special theory of gradient elasticity”, J. Mech. Behav. Mater., 8:3 (1997), 231–282 | DOI

[5] Lurie S. A., Fam T., Solyaev Yu.O., “Gradient model of thermoelasticity and its applications to the modeling of thin-layered composite structures”, Mekh. Kompoz. Mater. Konstr., 18:3 (2012), 440–449 (in Russian)

[6] Aifantis K., Askes H., “Gradient elasticity with interfaces as surfaces of discontinuity for the strain gradient”, J. Mech. Behav. Mater., 18:4 (2007), 283–306 | DOI

[7] Lurie S. A., Solyaev Yu.O., Rabinskii L. N., Kondratova Yu.N., Volov M. I., “Simulation of the stress-strain state of thin composite coatings based on solutions of the plane problem of strain-gradient elasticity for a layer”, Vestn. Permsk. Nats. Issled. Politekh. Univ. Mekh., 2013, no. 1, 161–181 (in Russian)

[8] Zhang N. H., Meng W. L., Aifantis E. C., “Elastic bending analysis of bilayered beams containing a gradient layer by an alternative two-variable method”, Compos. Struct., 93:12 (2011), 3130–3139 | DOI

[9] Li A., Zhou Sh., Zhou Sh., Wang B., “A size-dependent bilayered microbeam model based on strain gradient elasticity theory”, Compos. Struct., 108 (2014), 259–266 | DOI

[10] Li A., Zhou Sh., Zhou Sh., Wang B., “A size-dependent model for bi-layered Kirchhoff micro-plate”, Compos. Struct., 113 (2014), 272–280 | DOI

[11] Fu G., Zhou Sh., Qi L., “The size-dependent static bending of a partially covered laminated microbeam”, Int. J. Mech. Sci., 152 (2019), 411–419 | DOI

[12] Sadeghi H., Baghani M., Naghdabadi R., “Strain gradient thermoelasticity of functionally graded cylinders”, Sci. Iran., Trans. B, 21:4 (2014), 1415–1423

[13] Papargyri-Beskou S., Tsinopoulos S., “Lame's strain potential method for plane gradient elasticity problems”, Arch. Appl. Mech., 85:9–10 (2015), 1399–1419 | DOI | Zbl

[14] Boley B., Weiner J., Theory of Thermal Stresses, Mir, M., 1964, 517 pp. (in Russian)

[15] Kovalenko A. D., Thermoelasticity, Yshch. Shk., Kiev, 1975, 216 pp. (in Russian)

[16] Krylov V. I., Approximate Calculation of Integrals, Nauka, M., 1967, 500 pp. (in Russian)

[17] Filon L. N.G., “III. — On a quadrature formula for trigonometric integrals”, Proc. R. Soc. Edinburgh, 49 (1930), 38–47 | DOI

[18] Vishik M. I., Lyusternik L. A., “Regular degeneration and boundary layer for linear differential equations with small parameter”, Usp. Mat. Nauk, 12:5 (1957), 3–122 (in Russian) | Zbl