@article{UZKU_2021_163_2_a4,
author = {A. S. Begun and L. V. Kovtanyuk},
title = {Irreversible deformation of a rotating disc under plasticity and creep},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {167--180},
year = {2021},
volume = {163},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a4/}
}
TY - JOUR AU - A. S. Begun AU - L. V. Kovtanyuk TI - Irreversible deformation of a rotating disc under plasticity and creep JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2021 SP - 167 EP - 180 VL - 163 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a4/ LA - ru ID - UZKU_2021_163_2_a4 ER -
%0 Journal Article %A A. S. Begun %A L. V. Kovtanyuk %T Irreversible deformation of a rotating disc under plasticity and creep %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2021 %P 167-180 %V 163 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a4/ %G ru %F UZKU_2021_163_2_a4
A. S. Begun; L. V. Kovtanyuk. Irreversible deformation of a rotating disc under plasticity and creep. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 2, pp. 167-180. http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a4/
[1] Dem'yanushko I. V., Briger I. A., Strength Analysis of Rotating Disks, Mashinostroenie, M., 1978, 247 pp. (in Russian)
[2] Levin A. V., Moving Blades and Disks of Steam Turbines, Gosenergoizdat, M., 1963, 624 pp. (in Russian)
[3] Aleksandrova N., “Application of Mises yield criterion to rotating solid disk problem”, Int. J. Eng. Sci., 51 (2012), 333–337 | DOI | Zbl
[4] Bayat M., Sahari B. B., Saleem M., Ali A., Wong S. V., “Bending analysis of a functionally graded rotating disk based on the first order shear deformation theory”, Appl. Math. Modell., 33:11 (2009), 4215–4230 | DOI | Zbl
[5] Dai T., Dai H.-L., “Thermo-elastic analysis of a functionally graded rotating hollow circular disk with variable thickness and angular speed”, Appl. Math. Modell., 40:17–18 (2016), 7689–7707 | DOI | Zbl
[6] Gamer U., “Elastic-plastic deformation of the rotating solid disk”, Ing.-Arch., 54 (1984), 345–354 | DOI | Zbl
[7] Gupta V. K., Chandrawat H. N., Singh S. B., Ray S., “Creep behavior of a rotating functionally graded composite disc operating under thermal gradient”, Metall. Mater. Trans. A, 35:4 (2004), 1381–1391 | DOI
[8] Gupta S. K., Sonia T. P., “Creep transition in a thin rotating disc of variable density”, Def. Sci. J., 50:2 (2000), 147–153 | DOI
[9] Nyashin Y., Shishlyaev V., “Analytic creep durability of rotating uniform disks”, Int. J. Rotating Mach., 4:4 (1998), 249–256 | DOI
[10] Rees D. W.A., “Elastic-plastic stresses in rotating discs by von Mises and Tresca”, ZAMM – J. Appl. Math. Mech., 79:4 (1999), 281–288 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[11] Wahl A. M., “A comparison of flow criteria applied to elevated temperature creep of rotating disks with consideration of the transient condition”, Creep in Structures, IUTAM Symp. (International Union of Theoretical and Applied Mechanics), ed. Hoff N. J., Springer, Berlin–Heidelberg, 1962, 195–214 | DOI
[12] Zheng Y., Bahaloo H., Mousanezhad D., Vaziri A., Nayeb-Hashemi H., “Displacement and stress fields in a functionally graded fiber-reinforced rotating disk with nonuniform thickness and variable angular velocity”, J. Eng. Mater. Technol., 139:3 (2017), 031010, 1–10 | DOI
[13] Begun A. S., Kovtanyuk L. V., “Calculation of stresses, strains, and displacements in a rotating disk under creep conditions”, Vestn. Chuv. Gos. Pedagog. Univ. im. I.Ya. Yakovleva. Ser. Mekh. Predel'nogo Sostoyaniya, 2019, no. 1, 84–93 (In Russian)
[14] Begun A. S., Kovtanyuk L. V., “Deformation of a viscoelastic disk rotating with acceleration”, Vestn. Chuv. Gos. Pedagog. Univ. im. I.Ya. Yakovleva. Ser. Mekh. Predel'nogo Sostoyaniya, 2020, no. 3, 143–151 (in Russian)