Mots-clés : non-isothermal filtration, hydrate decomposition
@article{UZKU_2021_163_2_a3,
author = {N. G. Musakaev and D. S. Belskikh},
title = {Numerical study of the process of gas hydrate decomposition under the thermal impact on the hydrate-containing region of a porous formation},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {153--166},
year = {2021},
volume = {163},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a3/}
}
TY - JOUR AU - N. G. Musakaev AU - D. S. Belskikh TI - Numerical study of the process of gas hydrate decomposition under the thermal impact on the hydrate-containing region of a porous formation JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2021 SP - 153 EP - 166 VL - 163 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a3/ LA - ru ID - UZKU_2021_163_2_a3 ER -
%0 Journal Article %A N. G. Musakaev %A D. S. Belskikh %T Numerical study of the process of gas hydrate decomposition under the thermal impact on the hydrate-containing region of a porous formation %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2021 %P 153-166 %V 163 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a3/ %G ru %F UZKU_2021_163_2_a3
N. G. Musakaev; D. S. Belskikh. Numerical study of the process of gas hydrate decomposition under the thermal impact on the hydrate-containing region of a porous formation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 2, pp. 153-166. http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a3/
[1] Vasiliev A. A., Melnikov V. P., Semenov P. B., Oblogov G. E., Streletskaya I. D., “Methane concentration and emission in dominant landscapes of typical tundra of Western Yamal”, Dokl. Earth Sci., 485:1 (2019), 284–287 | DOI | DOI
[2] Neumann R. B., Moorberg C. J., Lundquist J. D., Turner J. C., Waldrop M. P., McFarland J. W., Euskirchen E. S., Edgar C. W., Turetsky M. R., “Warming Effects of Spring Rainfall Increase Methane Emissions From Thawing Permafrost”, Geophys. Res. Lett., 46:3 (2019), 1393–1401 | DOI
[3] Euskirchen E. S., Bret-Harte M. S., Shaver G. R., Edgar C. W., Romanovsky V. E., “Long-term release of carbon dioxide from Arctic tundra ecosystems in Alaska”, Ecosystems, 20:5 (2017), 960–974 | DOI
[4] Archer D., “Methane hydrate stability and anthropogenic climate change”, Biogeosciences, 4:4 (2007), 521–544 | DOI
[5] Kiselev A. A., Reshetnikov A. I., “Methane in the Russian Arctic: Measurements and model estimations”, Probl. Arkt. Antarkt., 2013, no. 2, 5–15 (In Russian)
[6] Makogon Y. F., Holditch S. A., Makogon T. Y., “Natural gas-hydrates – A potential energy source for the 21st century”, J. Pet. Sci. Eng., 56:1–3 (2007), 14–31 | DOI
[7] Lobkovskiy L. I., Nikiforov S. L., Dmitrevskiy N. N., Libina N. V., Semiletov I. P., Ananiev R. A., Meluzov A. A., Roslyakov A. G., “Gas extraction and degradation of the submarine permafrost rocks on the Laptev Sea shelf”, Oceanology, 55:2 (2015), 283–290 | DOI | DOI
[8] Chernov A. A., Elistratov D. S., Mezentsev I. V., Meleshkin A. V., Pil'nik A. A., “Hydrate formation in the cyclic process of refrigerant boiling-condensation in a water volume”, Int. J. Heat Mass Transfer., 108, Pt. B (2017), 1320–1323 | DOI
[9] Sung W. M., Lee H., Lee H., Lee C., “Numerical study for production performances of a methane hydrate reservoir stimulated by inhibitor injection”, Energy Sources, 24:6 (2002), 499–512 | DOI
[10] Vasil'ev V.I., Popov V. V., Tsypkin G. G., “Numerical investigation of the decomposition of gas hydrates coexisting with gas in natural reservoirs”, Fluid Dyn., 41:4 (2006), 599–605 | DOI | Zbl
[11] Bai Y., Li Q., Zhao Y., Li X., Du Y., “The experimental and numerical studies on gas production from hydrate reservoir by depressurization”, Transp. Porous Media, 79 (2009), 443–468 | DOI
[12] Feng J.-C., Li X.-S., Li G., Li B., Chen Z.-Y., Wang Y., “Numerical investigation of hydrate dissociation performance in the South China Sea with different horizontal well configurations”, Energies, 7:8 (2014), 4813–4834 | DOI
[13] Barenblatt G. I., Lobkovsky L. I., Nigmatulin R. I., “A mathematical model of gas outflow from gas-saturated ice and gas hydrates”, Dokl. Earth Sci., 470:2 (2016), 1046–1049 | DOI | DOI
[14] Lobkovskii L. I., Ramazanov M. M., “Mathematical model of axisymmetric quasi-steady-state heat and mass transfer in a gas hydrate reservoir”, Fluid Dyn., 52:4 (2017), 536–546 | DOI | DOI
[15] Wan Q.-C., Si H., Li B., Li G., “Heat transfer analysis of methane hydrate dissociation by depressurization and thermal stimulation”, Int. J. Heat Mass Transfer., 127 (2018), 206–217 | DOI
[16] Wang Y., Feng J.-C., Li X.-S., Zhang Y., Chen Z.-Y., “Fluid flow mechanisms and heat transfer characteristics of gas recovery from gas-saturated and water-saturated hydrate reservoirs”, Int. J. Heat Mass Transfer., 118 (2018), 1115–1127 | DOI
[17] Moridis G. J., Queiruga A. F., Reagan M. T., “Production from multilayered hydrate-bearing media with fully coupled flow, thermal, chemical and geomechanical processes using TOUGH + Millstone. Part 1: Numerical modeling of hydrates”, Transp. Porous Media, 128 (2019), 405–430 | DOI
[18] Musakaev N. G., Khasanov M. K., Borodin S. L., Belskikh D. S., “Numerical investigation of the methane hydrate decomposition in the process of warm gas injection into a hydrate-saturated reservoir”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 56, 88–101 (In Russian) | DOI
[19] Musakaev N. G., Borodin S. L., Gubaidullin A. A., “Methodology for the numerical study of the methane hydrate formation during gas injection into a porous medium”, Lobachevskii J. Math., 41:7 (2020), 1272–1277 | DOI | Zbl
[20] Nigmatulin R. I., Dynamics of Multiphase Media, v. 1, 2, Nauka, M., 1987 (In Russian)
[21] Basniev K. S., Kochina I. N., Underground Hydromechanics, Nedra, M., 1993, 416 pp. (In Russian)
[22] Shagapov V.Sh., Musakaev N. G., Urazov R. R., “Mathematical model of natural gas flow in pipelines with allowance for the dissociation of gas hydrates”, J. Eng. Phys. Thermophys., 81:2 (2008), 287–296 | DOI
[23] Istomin V. A., Yakushev V. S., Gas Hydrates in Natural Conditions, Nedra, M., 1992, 236 pp. (In Russian)
[24] Musakaev N. G., Borodin S. L., “To the question of the interpolation of the phase equilibrium curves for the hydrates of methane and carbon dioxide”, MATEC Web Conf., 115 (2017), 05002, 1–4 | DOI
[25] Sloan E. D., Koh A. C., Clathrate Hydrates of Natural Gases, CRC Press, Taylor and Francis Group, 2008, 752 pp.
[26] Shagapov V.Sh., Musakaev N. G., Khabeev N. S., Bailey S. S., “Mathematical modelling of two-phase flow in a vertical well considering paraffin deposits and external heat exchange”, Int. J. Heat Mass Transfer., 47:4 (2004), 843–851 | DOI
[27] Musakaev N. G., Khasanov M. K., “Solution of the problem of natural gas storages creating in gas hydrate state in porous reservoirs”, Mathematics, 8:1 (2020), 36, 1–14 | DOI
[28] Misyura S. Y., Donskoy I. G., “Dissociation kinetics of methane hydrate and CO$_2$ hydrate for different granular composition”, Fuel, 262 (2020), 116614, 1–8 | DOI
[29] Musakaev N. G., Khasanov M. K., “On the issue of the solutions existence of the problem of gas hydrate dissociation in a porous medium with the formation of an extended region of phase transitions”, J. Phys.: Conf. Ser., 1404 (2019), 012034, 1–6 | DOI