Mots-clés : annular channel, torque.
@article{UZKU_2021_163_2_a2,
author = {I. V. Morenko},
title = {Two-phase flow in a narrow annular channel between stationary and rotating cylinders},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {143--152},
year = {2021},
volume = {163},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a2/}
}
TY - JOUR AU - I. V. Morenko TI - Two-phase flow in a narrow annular channel between stationary and rotating cylinders JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2021 SP - 143 EP - 152 VL - 163 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a2/ LA - ru ID - UZKU_2021_163_2_a2 ER -
%0 Journal Article %A I. V. Morenko %T Two-phase flow in a narrow annular channel between stationary and rotating cylinders %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2021 %P 143-152 %V 163 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a2/ %G ru %F UZKU_2021_163_2_a2
I. V. Morenko. Two-phase flow in a narrow annular channel between stationary and rotating cylinders. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 2, pp. 143-152. http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a2/
[1] Serov A. F., Mamonov V. N., Nazarov A. D., “Pulsation energy of the Couette–Taylor flow in gaps of multicylinder counter-rotating rotors”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 3, 2017, 364–373 (in Russian)
[2] Zhao J., Liu G., Li B., “Two-phase flow patterns in a square mini-channel”, J. Therm. Sci., 13 (2004), 174–178 | DOI
[3] Yang Ch.-Y., Shieh Ch.-Ch., “Flow pattern of air-water and two-phase R-134a in small circular tubes”, Int. J. Multiphase Flow, 27:7 (2001), 1163–177 | DOI
[4] Hubacz R., Wroński S., “Horizontal Couette–Taylor flow in a two-phase gas–liquid system: Flow patterns”, Exp. Therm. Fluid Sci., 28:5 (2004), 457–466 | DOI
[5] Hubacz R., “Classification of flow regimes in gas-liquid horizontal Couette–Taylor flow using dimensionless criteria”, J. Hydrodyn., 27:5 (2015), 773–781 | DOI
[6] Morenko I. V., “Numerical simulation of laminar Taylor–Couette flow”, Lobachevskii J. Math., 41:7 (2020), 1255–1260 | DOI
[7] Morenko I. V., “Viscous fluid flow in a wide annular gap of two rotating coaxial cylinders”, J. Phys.: Conf. Ser., 1588 (2020), 012034, 1–4 | DOI
[8] Morenko I. V., “Viscous fluid flow in a narrow annular channel between the stationary outer and rotating inner cylinders”, Proc. All-Russ. Conf. Int. Participation “Current Problems of Continuum Mechanics”, Izd. Akad. Nauk RT, Kazan, 2020, 287–291 (in Russian)
[9] Hirt C. W., Nichols B. D., “Volume of fluid (VOF) method for the dynamics of free boundaries”, J. Comput. Phys., 39:1 (1981), 201–225 | DOI | Zbl
[10] Taylor G. I., “Stability of viscous liquid contained between rotating cylinders”, Philos. Trans. R. Soc. L, 223 (1923), 289–343 | DOI | Zbl
[11] Fokoua G., Gabillet C., Aubert A., Colin C., “Effect of bubble's arrangement on the viscous torque in bubbly Taylor–Couette flow”, Phys. Fluids, 27:3 (2015), 034105, 1–34 | DOI
[12] Kaneda M., Tagawa T., Noir J., Aurnou J. M., “Variations in driving torque in Couette–Taylor flow subject to a vertical magnetic field”, J. Phys.: Conf. Ser., 14 (2005), 42–47 | DOI