Two-phase flow in a narrow annular channel between stationary and rotating cylinders
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 2, pp. 143-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The results of a numerical study of three-dimensional two-phase flow in a channel between coaxial cylinders, which arises due to axial pressure drop and rotation of the inner cylinder, are presented. The finite volume method on a structured mesh with local refinement is used to solve the system of Navier–Stokes equations. The calculations are performed with the help of the OpenFOAM software package. Analysis of the flow structure and distribution of the gas phase in the annular channel depending on the rotation speed of the inner cylinder is carried out. The addition of the gas phase to the liquid flow leads to the occurrence of torque oscillations and an increase in the average torque value.
Keywords: two-phase flow
Mots-clés : annular channel, torque.
@article{UZKU_2021_163_2_a2,
     author = {I. V. Morenko},
     title = {Two-phase flow in a narrow annular channel between stationary and rotating cylinders},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {143--152},
     year = {2021},
     volume = {163},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a2/}
}
TY  - JOUR
AU  - I. V. Morenko
TI  - Two-phase flow in a narrow annular channel between stationary and rotating cylinders
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2021
SP  - 143
EP  - 152
VL  - 163
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a2/
LA  - ru
ID  - UZKU_2021_163_2_a2
ER  - 
%0 Journal Article
%A I. V. Morenko
%T Two-phase flow in a narrow annular channel between stationary and rotating cylinders
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2021
%P 143-152
%V 163
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a2/
%G ru
%F UZKU_2021_163_2_a2
I. V. Morenko. Two-phase flow in a narrow annular channel between stationary and rotating cylinders. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 2, pp. 143-152. http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a2/

[1] Serov A. F., Mamonov V. N., Nazarov A. D., “Pulsation energy of the Couette–Taylor flow in gaps of multicylinder counter-rotating rotors”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 3, 2017, 364–373 (in Russian)

[2] Zhao J., Liu G., Li B., “Two-phase flow patterns in a square mini-channel”, J. Therm. Sci., 13 (2004), 174–178 | DOI

[3] Yang Ch.-Y., Shieh Ch.-Ch., “Flow pattern of air-water and two-phase R-134a in small circular tubes”, Int. J. Multiphase Flow, 27:7 (2001), 1163–177 | DOI

[4] Hubacz R., Wroński S., “Horizontal Couette–Taylor flow in a two-phase gas–liquid system: Flow patterns”, Exp. Therm. Fluid Sci., 28:5 (2004), 457–466 | DOI

[5] Hubacz R., “Classification of flow regimes in gas-liquid horizontal Couette–Taylor flow using dimensionless criteria”, J. Hydrodyn., 27:5 (2015), 773–781 | DOI

[6] Morenko I. V., “Numerical simulation of laminar Taylor–Couette flow”, Lobachevskii J. Math., 41:7 (2020), 1255–1260 | DOI

[7] Morenko I. V., “Viscous fluid flow in a wide annular gap of two rotating coaxial cylinders”, J. Phys.: Conf. Ser., 1588 (2020), 012034, 1–4 | DOI

[8] Morenko I. V., “Viscous fluid flow in a narrow annular channel between the stationary outer and rotating inner cylinders”, Proc. All-Russ. Conf. Int. Participation “Current Problems of Continuum Mechanics”, Izd. Akad. Nauk RT, Kazan, 2020, 287–291 (in Russian)

[9] Hirt C. W., Nichols B. D., “Volume of fluid (VOF) method for the dynamics of free boundaries”, J. Comput. Phys., 39:1 (1981), 201–225 | DOI | Zbl

[10] Taylor G. I., “Stability of viscous liquid contained between rotating cylinders”, Philos. Trans. R. Soc. L, 223 (1923), 289–343 | DOI | Zbl

[11] Fokoua G., Gabillet C., Aubert A., Colin C., “Effect of bubble's arrangement on the viscous torque in bubbly Taylor–Couette flow”, Phys. Fluids, 27:3 (2015), 034105, 1–34 | DOI

[12] Kaneda M., Tagawa T., Noir J., Aurnou J. M., “Variations in driving torque in Couette–Taylor flow subject to a vertical magnetic field”, J. Phys.: Conf. Ser., 14 (2005), 42–47 | DOI