Keywords: liquid layer on а wall, wall load, CIP-CUP method.
@article{UZKU_2021_163_2_a0,
author = {T. S. Guseva},
title = {Impact of a liquid jet on a wetted wall},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {117--127},
year = {2021},
volume = {163},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a0/}
}
T. S. Guseva. Impact of a liquid jet on a wetted wall. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 2, pp. 117-127. http://geodesic.mathdoc.fr/item/UZKU_2021_163_2_a0/
[1] Heymann F. J., “Erosion by liquids”, Mach. Des., 10 (1970), 118–124
[2] Xiong J., Koshizuka S., Sakai M., “Numerical analysis of droplet impingement using the moving particle semi-implicit method”, J. Nucl. Sci. Technol., 47:3 (2010), 314–321 | DOI
[3] Xiong J., Koshizuka S., Sakai M., “Investigation of droplet impingement onto wet walls based on simulation using particle method”, J. Nucl. Sci. Technol., 48:1 (2011), 145–153 | DOI
[4] Kornfeld M., Suvorov L., “On the destructive action of cavitation”, J. Appl. Phys., 15 (1944), 495–506 | DOI
[5] Johnsen E., Colonius T., “Numerical simulations of non-spherical bubble collapse”, J. Fluid Mech., 629 (2009), 231–262 | DOI | Zbl
[6] Hsiao C. T., Jayaprakash A., Kapahi A., Choi J. K., Chahine G. L., “Modelling of material pitting from cavitation bubble collapse”, J. Fluid Mech., 755 (2014), 142–175 | DOI
[7] Heymann F. J., “High-speed impact between a liquid drop and a solid surface”, J. Appl. Phys., 40:13 (1969), 5113–5122 | DOI
[8] Lesser M. B., Field J. E., “The impact of compressible liquids”, Annu. Rev. Fluid Mech., 15 (1983), 97–122 | DOI
[9] Haller K. K., Ventikos Y., Poulikakos D., Monkewitz P., “Computational study of high-speed liquid droplet impact”, J. Appl. Phys., 92:5 (2002), 2821–2828 | DOI
[10] Guseva T. S., Malakhov V. G., “Effect of liquid compressibility at a jet impact on a wall”, Lobachevskii J. Math., 40:6 (2019), 757–762 | DOI | Zbl
[11] Aganin A.A, Il'gamov M. A., Guseva T. S., “Influence of the shape of the jet head on its impact on a wetted wall”, J. Appl. Mech. Tech. Phys., 60:4 (2019), 644–649 | DOI
[12] Aganin A. A., Guseva T. S., “Liquid jet impact on a wet wall”, Eur. J. Mech. – B/Fluids, 79 (2020), 141–150 | DOI | Zbl
[13] Guseva T. S., “Influence of a thin liquid layer on the impact of a jet upon a wall”, J. Mach. Manuf. Reliab., 48:4 (2019), 314–319 | DOI
[14] Yabe T., Xiao F., Utsumi T., “The constrained interpolation profile method for multiphase analysis”, J. Comput. Phys., 169:2 (2001), 556–593 | DOI | Zbl
[15] Takizawa K., Yabe T., Tsugawa Y., Tezduyar T. E., Mizoe H., “Computation of free-surface flows and fluid-object interactions with the CIP method based on adaptive meshless Soroban grids”, Comput. Mech., 40 (2007), 167–183 | DOI | Zbl
[16] Yabe T., Wang P. Y., “Unified numerical procedure for compressible and incompressible fluid”, J. Phys. Soc. Jpn., 60:7 (1991), 2105–2108 | DOI
[17] Ogata Y., Yabe T., “Shock capturing with improved numerical viscosity in primitive Euler representation”, Comput. Phys. Commun., 119:2–3 (1999), 179–193 | DOI | Zbl
[18] Aganin A. A., Guseva T. S., “Numerical simulation of impact of a jet on a wall”, Math. Models Comput. Simul., 9:5 (2017), 623–635 | DOI
[19] Aganin A., Guseva T., “Numerical simulation of liquid mass collision with a wall”, Progress in Computational Fluid Dynamics, 19:5 (2019), 293–306 | DOI
[20] Chizhov A. V., Schmidt A. A., “Impact of high-velocity drop on an obstacle”, Tech. Phys., 45:12 (2000), 1529–1537 | DOI
[21] Ando K., Liu A.-Q., Ohl C.-D., “Homogeneous nucleation in water in microfluidic channels”, Phys. Rev. Lett., 109:4 (2012), 044501, 1–5 | DOI