Evolution of acoustic pulses in damaged underground pipelines
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 1, pp. 48-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The research is of increasing relevance due to the need for recommendations on improving the existing methods for rapid detection of pipeline damage at the early stages of hydrocarbon liquid flow into the ground through the damaged areas. To detect possible pipeline damage that occurs during the transportation of hydrocarbon liquids, a technique of pressure pulse probing in the liquid filling the channel is proposed. A theoretical model of propagation of finite-duration pulses through an underground pipeline with corrosion-rusted damages in the short-wave approximation is developed. Integro-differential equations that take into account the manifestation of viscosity in a liquid in the boundary layer near the inner surface of the pipeline wall are obtained. Dispersion expressions for the distribution of the pulse signal within the corroded area are induced, and the reflection and transmission coefficients are determined based on the boundary conditions for the damage. The dynamics of pulses in the pipeline is studied using the fast Fourier transform. The features of pulse signal dispersion in the area of corrosion depending on the channel radius, soil filtration characteristics, and the amount of damage to the channel wall are revealed. The theoretical calculations show that the “echo” of the signal from the damage is weak, and the modulus of the coefficient of signal reflection from the border of the damaged area is no more than 10% of the scanning pulse signal. Therefore, in order to catch the “echo” of the signal at the early stages of the liquid flow through the corroded section of the pipeline, sufficiently accurate devices are needed to generate a scanning signal of a given duration and amplitude, as well as highly sensitive sensors – signal analyzers. The theoretical results of the research serve as a basis of the patent for the invention.
Keywords: pulse, pipeline, soil.
Mots-clés : liquid, filtration
@article{UZKU_2021_163_1_a3,
     author = {V. Sh. Shagapov and E. V. Galiakbarova and Z. R. Chakimova},
     title = {Evolution of acoustic pulses in damaged underground pipelines},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {48--58},
     year = {2021},
     volume = {163},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_1_a3/}
}
TY  - JOUR
AU  - V. Sh. Shagapov
AU  - E. V. Galiakbarova
AU  - Z. R. Chakimova
TI  - Evolution of acoustic pulses in damaged underground pipelines
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2021
SP  - 48
EP  - 58
VL  - 163
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2021_163_1_a3/
LA  - ru
ID  - UZKU_2021_163_1_a3
ER  - 
%0 Journal Article
%A V. Sh. Shagapov
%A E. V. Galiakbarova
%A Z. R. Chakimova
%T Evolution of acoustic pulses in damaged underground pipelines
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2021
%P 48-58
%V 163
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2021_163_1_a3/
%G ru
%F UZKU_2021_163_1_a3
V. Sh. Shagapov; E. V. Galiakbarova; Z. R. Chakimova. Evolution of acoustic pulses in damaged underground pipelines. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 1, pp. 48-58. http://geodesic.mathdoc.fr/item/UZKU_2021_163_1_a3/

[1] Vasil'ev G.G., Korobkov G. E., Korshak A. A., Lurie M. V., Pisarevskii V. M., Prokhorov A. D., Soshchenko A. E., Shammazov A. M., Pipeline Transport of Oil, v. 1, Nedra, M., 2002, 406 pp. (In Russian)

[2] Biot M. A., “Propagation of elastic waves in a cylindrical bore containing a fluid”, J. Appl. Phys., 23:9 (1952), 497–509 | DOI

[3] Shagapov V.Sh., Khlestkina N. M., Lhuillier D., “Acoustic waves in channels with porous and permeable walls”, Transp. Porous Media, 35:3 (1999), 327–344 | DOI

[4] Bulatova Z. A., Gumerova G. A., Shagapov V.Sh., “Evolution of acoustic waves in channels with permeable-wall regions in an inhomogeneous porous medium”, Acoust. Phys., 48:3 (2002), 254–262 | DOI

[5] Shagapov V. Sh., Bulatova Z. A., Shcheglov A. V., “On the possibility of acoustic probing of gas wells”, J. Appl. Mech. Tech. Phys., 80:4 (2007), 760–768 | DOI

[6] Nigmatulin R. I., Gubaydullin A. A., Shagapov V.Sh., “Numerical investigation of shock and thermal waves in porous saturated medium with phase transitions”, Porous Media: Physics, Models, Simulation, Proc. Int. Conf., eds. A. Dmitrievsky, M. Panfilov, World Sci. Publ., 2000, 3–31 | DOI

[7] Khusainov I. G., “Acoustic sounding of perforated wellbores by short waves”, J. Appl. Mech. Tech. Phys., 54:1 (2013), 74–80 | DOI | Zbl

[8] Shagapov V. S., Galiakbarova E. V., Khakimova Z. R., “To the theory of acoustic scanning of pipelines with the damaged areas”, Tr. Inst. Mekh. im. R.R. Mavlyutova UNTs Ross. Akad. Nauk, 11:2 (2016), 263–271 (In Russian) | DOI

[9] Galiakbarova E. V., Galiakbarov V. F., “Pulse scanning of oil pipelines for detection of leaks”, Probl. Sbora, Podgot. Transp. Nefteprod., 2012, no. 3, 162–168 (In Russian)

[10] Galiakbarova E. V., “Wave research on oil pipelines for detection of leaks”, Neftegazov. Delo, 10:2 (2012), 44–48 (In Russian)

[11] Galiakbarov V. F.,Gol'yanov A. A., Korobkov G. E., Way of definition of liquid leaks from the pipeline, Patent RF No 2197679, 2003 (In Russian) | Zbl

[12] Galiakbarov V. F., Galiakbarova E. V., Kovshov V. D., Aminev F. M., Khakimova Z. R., System of pipeline condition control, Patent RF No 2606719, 2017 (In Russian) | Zbl

[13] Shagapov V. S., Galiakbarova E. V., Khakimova Z. R., “On the theory of acoustic sounding of tubular channels containing depressurization portions”, J. Eng. Phys. Thermophys., 91:3 (2018), 663–672 | DOI

[14] Shagapov V. S., Galiakbarova E. V., Khusainov I. G., Khakimova Z. R., “Acoustic scanning of damaged pipelines in soil”, J. Appl. Mech. Tech. Phys., 59:4 (2018), 724–732 | DOI | DOI | Zbl

[15] Isakovich M. A., General Acoustics, Nauka, M., 1973, 496 pp. (In Russian)

[16] Landau L. D., Lifshitz E. M., Hydrodynamics, Nauka, M., 1986, 733 pp. (In Russian)

[17] Kochin N. E., Kibel I. A., Rose N. V., Theoretical Hydrodynamics, v. II, Fizmatgiz, M., 1963, 728 pp. (In Russian)

[18] Tikhonov A. N., Samarsky A. A., Equations of Mathematical Physics, Nauka, M., 1972, 736 pp. (In Russian)

[19] Efimov V. A., Mathematical Analysis (Special Sections), v. I, Vyssh. Shk., M., 1980, 279 pp. (In Russian)

[20] Gubaidullin A. A., Boldyreva O.Yu., “Computer modeling of wave processes in porous media”, Vestn. Kibern., 2016, no. 2, 103–111 (In Russian)