The bubble dynamics and impulse loading of a rigid surface under acoustic action
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 1, pp. 31-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The results of a numerical study of the axisymmetric expansion and collapse of a gas bubble and related loading on a flat rigid wall under harmonic liquid (water) pressure oscillation are presented. Initially, a spherical bubble with a radius of 1 mm and the liquid are at rest. The impulse load on the wall results from the cumulative liquid jet impact on the bubble surface part close to the wall. It was found that, for the forcing amplitude within 0.06–0.14 MPa, the shape of the jet remains nearly the same at the forcing frequency of 0.25–4 kHz, the velocity at its impact becomes maximum at a frequency of 1.5 kHz. The forcing amplitude influence is mainly reduced to increasing the jet impact velocity. At the fixed forcing frequency and amplitude values, an increase in the initial distance between the bubble and the wall leads to an insignificant variation in the jet impact velocity. For a forcing frequency corresponding to the maximum jet velocity, some estimates of the impulse loading on the wall were determined, depending on the forcing amplitude and the initial distance between the bubble and the wall. It was found that an increase in the amplitude results in the higher and longer loading, as well as in the larger radius of the region with the maximum load.
Keywords: cavitation bubble, wall loading, boundary element method, CIP-CUP method.
Mots-clés : acoustic action, jet impact
@article{UZKU_2021_163_1_a2,
     author = {A. A. Aganin and T. S. Guseva and L. A. Kosolapova and V. G. Malakhov},
     title = {The bubble dynamics and impulse loading of a rigid surface under acoustic action},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {31--47},
     year = {2021},
     volume = {163},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_1_a2/}
}
TY  - JOUR
AU  - A. A. Aganin
AU  - T. S. Guseva
AU  - L. A. Kosolapova
AU  - V. G. Malakhov
TI  - The bubble dynamics and impulse loading of a rigid surface under acoustic action
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2021
SP  - 31
EP  - 47
VL  - 163
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2021_163_1_a2/
LA  - ru
ID  - UZKU_2021_163_1_a2
ER  - 
%0 Journal Article
%A A. A. Aganin
%A T. S. Guseva
%A L. A. Kosolapova
%A V. G. Malakhov
%T The bubble dynamics and impulse loading of a rigid surface under acoustic action
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2021
%P 31-47
%V 163
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2021_163_1_a2/
%G ru
%F UZKU_2021_163_1_a2
A. A. Aganin; T. S. Guseva; L. A. Kosolapova; V. G. Malakhov. The bubble dynamics and impulse loading of a rigid surface under acoustic action. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 1, pp. 31-47. http://geodesic.mathdoc.fr/item/UZKU_2021_163_1_a2/

[1] Terwisga T. J.C., Wijngaarden E., Bosschers J., Kuiper G., “Cavitation research on ship propellers: A review of achievements and challenges”, Sixth Int. Symp. on Cavitation (Wageningen, Neth., 2006), 1–14

[2] Pearsall I. S., Cavitation, Mills and Boon, London, 1972, 80 pp.

[3] Brennen C. E., Hydrodynamics of Pumps, Oxford Univ. Press, N. Y., 1994, 24 pp.

[4] Hubballi B. V., Sondur V. B., “A review on the prediction of cavitation erosion inception in hydraulic control valves”, Int. J. Emerging Technol. Adv. Eng., 3:1 (2013), 110–119

[5] Guo Sh., Khoo B.Ch., Teo S. L. M., Lee H. P., “The effect of cavitation bubbles on the removal of juvenile barnacles”, Colloids Surf., B, 109 (2013), 219–227 | DOI

[6] Kieser B., Phillion R., Smith S., McCartney T., “The application of industrial scale ultrasonic cleaning to heat exchangers”, Proc. Int. Conf. on Heat Exchanger Fouling and Cleaning, eds. M.R. Malayeri, H. Müller-Steinhagen, A.P. Watkinson, 2011, 336–338

[7] Blake J. R., Leppinen D. M., Wang Q., “Cavitation and bubble dynamics: The Kelvin impulse and its applications”, Interface Focus, 5:5 (2015), 20150017, 15 pp. | DOI

[8] Calvisi M. L., Iloreta J. I., Szeri A. J., “Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 2. Reflected shock intensifies non-spherical cavitation collapse”, J. Fluid Mech., 616 (2008), 63–97 | DOI | Zbl

[9] Ohl C. D., Arora M., Ikink R., Jong N., Versluis M., Delius M., Lohse D., “Sonoporation from jetting cavitation bubbles”, Biophys. J., 91:11 (2006), 4285–4295 | DOI

[10] Philipp A., Delius M., Scheffczyk C., Vogel A., Lauterborn W., “Interaction of lithotripter-generated shock waves with air bubbles”, J. Acoust. Soc. Am., 93:3 (1993), 2496–2509 | DOI

[11] Shima A., Tomita Y., Takahashi K., “The collapse of a gas bubble near a solid wall by a shock wave and the induced impulsive pressure”, Proc. Inst. Mech. Eng., 198C:8 (1984), 81–86

[12] Tomita Y., Shima A., “Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse”, J. Fluid Mech., 169 (1986), 535–564 | DOI

[13] Brujan E. A., Matsumoto Y., “Collapse of micrometer-sized cavitation bubbles near a rigid boundary”, Microfluid. Nanofluid., 13:6 (2012), 957–966 | DOI

[14] Brujan E. A., Ikeda T., Matsumoto Y., “On the pressure of cavitation bubbles”, Exp. Therm. Fluid Sci., 32:5 (2008), 1188–1191 | DOI

[15] Voinov O. V., Voinov O. V., “Numerical method of calculating nonstationary motions of an ideal incompressible fluid with free surfaces”, Dokl. Akad. Nauk SSSR, 221:3 (1975), 559–562 (In Russian) | Zbl

[16] Voinov O. V., Voinov V. V., “On the pattern of cavitation bubble collapse near the wall and formation of cumulative jet”, Dokl. Akad. Nauk SSSR, 227:1 (1976), 63–66 (In Russian)

[17] Voinov O. V., “A calculation of the parameters of the high-speed jet formed in the collapse of a bubble”, J. Appl. Mech. Tech. Phys., 20:3 (1979), 333–337 | DOI

[18] Sato K., Tomita Y., Shima A., “Numerical analysis of a gas bubble near a rigid boundary in an oscillatory pressure field”, J. Acoust. Soc. Am., 95:5-1 (1994), 2416–2424 | DOI

[19] Curtiss G. A., Leppinen D. M., Wang Q. X., Blake J. R., “Ultrasonic cavitation near a tissue layer”, J. Fluid Mech., 730 (2013), 245–272 | DOI | Zbl

[20] Wang Q. X., Manmi K., “Three dimensional microbubble dynamics near a wall subject to high intensity ultrasound”, Phys. Fluids, 26:3 (2014), 032104, 23 pp. | DOI | Zbl

[21] Ye X., Zhang Am., Zeng Dr., “Motion characteristics of cavitation bubble near the rigid wall with the driving of acoustic wave”, China Ocean Eng., 29 (2015), 17–32 | DOI

[22] Ye X., Yao X. L., Sun L. Q., “Cavitation bubble in compressible fluid near the rigid wall subjected to the acoustic wave with arbitrary incidence angle in three-dimensional”, J. Mech., 31:3 (2015), 307–318 | DOI

[23] Osterman A., Dular M., Sirok B., “Numerical simulation of a near-wall bubble collapse in an ultrasound field”, J. Fluid Sci. Technol., 4:1 (2009), 210–221 | DOI

[24] Johnsen E., Colonius T., “Numerical simulations of non-spherical bubble collapse”, J. Fluid Mech., 629 (2009), 231–262 | DOI | Zbl

[25] Turangan C. K., Jamaluddin A. R., Ball G. J., Leighton T. G., “Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water”, J. Fluid Mech., 598 (2008), 1–25 | DOI | Zbl

[26] Hsiao C. T., Jayaprakash A., Kapahi A., Choi J. K., Chahine G. L., “Modelling of material pitting from cavitation bubble collapse”, J. Fluid Mech., 755 (2014), 142–175 | DOI

[27] Guo C., “The relationship between the collapsing cavitation bubble and its microjet near a rigid wall under an ultrasound field”, Cavitation – Selected Issues, eds. W. Borek, T. Tański, M. Król., IntechOpen, 2018, 73–89 | DOI

[28] Ma J., Hsiao C.-T., Chahine G. L., “Numerical study of acoustically driven bubble cloud dynamics near a rigid wall”, Ultrason. Sonochem., 40, Pt. A (2018), 944–954 | DOI

[29] Takizawa K., Yabe T., Tsugawa Y., Tezduyar T. E., Mizoe H., “Computation of free-surface flows and fluid-object interactions with the CIP method based on adaptive meshless Soroban grids”, Comput. Mech., 40:1 (2007), 167–183 | DOI | Zbl

[30] Aganin A. A., Guseva T. S., Kosolapova L. A., Malakhov V. G., “Dynamics of an acoustically excited gas cavity attached to a rigid surface”, Lobachevskii J. Math., 40:11 (2019), 1897–1903 | DOI | Zbl

[31] Aganin A. A., Kosolapova L. A., Malakhov V. G., “Numerical simulation of the evolution of a gas bubble in a liquid near a wall”, Math. Models Comput. Simul., 10:1 (2018), 89–98 | DOI

[32] Yabe T., Xiao F., Utsumi T., “The constrained interpolation profile method for multiphase analysis”, J. Comput. Phys., 169:2 (2001), 556–593 | DOI | Zbl

[33] Haller K. K., Ventikos Y., Poulikakos D., Monkewitz P., “Computational study of high-speed liquid droplet impact”, J. Appl. Phys., 92:5 (2002), 2821–2828 | DOI

[34] Xiong J., Koshizuka S., Sakai M., “Numerical analysis of droplet impingement using the moving particle semi-implicit method”, J. Nucl. Sci. Technol., 47:3 (2010), 314–321 | DOI

[35] Ogata Y., Yabe T., “Shock capturing with improved numerical viscosity in primitive Euler representation”, Comput. Phys., 119:2–3 (1999), 179–193 | DOI | Zbl

[36] Aganin A. A., Guseva T. S., “Numerical simulation of impact of a jet on a wall”, Math. Models Comput. Simul., 9:5 (2017), 623–635 | DOI | Zbl

[37] Xiong J., Koshizuka S., Sakai M., “Investigation of droplet impingement onto wet walls based on simulation using particle method”, J. Nucl. Sci. Technol., 48:1 (2011), 145–153 | DOI

[38] Fujisawa K., Yamagata T., Fujisawa N., “Damping effect on impact pressure from liquid droplet impingement on wet wall”, Ann. Nucl. Energy, 121 (2018), 260–268 | DOI

[39] Heymann F. J., “High-speed impact between a liquid drop and a solid surface”, J. Appl. Phys., 40:13 (1969), 5113–5122 | DOI