Asymptotic analysis of geometrically nonlinear vibrations of long plates
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 4, pp. 396-410 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we performed an asymptotic analysis for equations of the classical plate theory with the von Kármán strains under the assumption that the width of the plate is small compared with its length. A system of one-dimensional equations, which describes the nonlinear interaction of flexural and torsional vibrations of beams, was derived. This enables the possibility of exciting torsional vibrations by flexural vibrations. This possibility was analyzed for a model problem, when flexural vibrations occur in normal modes.
Keywords: asymptotic analysis, flexural vibrations, parametric resonance, resonance gaps
Mots-clés : torsional vibrations, Mathieu equation.
@article{UZKU_2020_162_4_a1,
     author = {B. Affane and A. G. Egorov},
     title = {Asymptotic analysis of geometrically nonlinear vibrations of long plates},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {396--410},
     year = {2020},
     volume = {162},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2020_162_4_a1/}
}
TY  - JOUR
AU  - B. Affane
AU  - A. G. Egorov
TI  - Asymptotic analysis of geometrically nonlinear vibrations of long plates
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2020
SP  - 396
EP  - 410
VL  - 162
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2020_162_4_a1/
LA  - ru
ID  - UZKU_2020_162_4_a1
ER  - 
%0 Journal Article
%A B. Affane
%A A. G. Egorov
%T Asymptotic analysis of geometrically nonlinear vibrations of long plates
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2020
%P 396-410
%V 162
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2020_162_4_a1/
%G ru
%F UZKU_2020_162_4_a1
B. Affane; A. G. Egorov. Asymptotic analysis of geometrically nonlinear vibrations of long plates. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 4, pp. 396-410. http://geodesic.mathdoc.fr/item/UZKU_2020_162_4_a1/

[1] Sader J. E., “Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope”, J. Appl. Phys., 84:1 (1998), 64–76 | DOI

[2] Kimber M., Lonergan R., Garimella S. V., “Experimental study of aerodynamic damping in arrays of vibrating cantilevers”, J. Fluids Struct., 25:8 (2009), 1334–1347 | DOI

[3] Yeh P. D., Alexeev A., “Free swimming of an elastic plate plunging at low Reynolds number”, Phys. Fluids, 26:5 (2014), 053604, 1–13 | DOI | MR

[4] Paimushin V. N., Firsov V. A., Gyunal I., Egorov A. G., “Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens. 1. Experimental basis”, Mech. Compos. Mater., 50:2 (2014), 127–136 | DOI

[5] Egorov A. G., Kamalutdinov A. M., Nuriev A. N., Paimushin V. N., “Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens 2. Aerodynamic component of damping”, Mech. Compos. Mater., 50:3 (2014), 267–278 | DOI | MR

[6] Egorov A. G., Kamalutdinov A. M., Nuriev A. N., “Evaluation of aerodynamic forces acting on oscillating cantilever beams based on the study of the damped flexural vibration of aluminium test samples”, J. Sound Vibr., 421 (2018), 334–347 | DOI

[7] Egorov A. G., Kamalutdinov A. M., Nuriev A. N., Paimushin V. N., “Experimental determination of damping of plate vibrations in a viscous fluid”, Dokl. Phys., 62 (2017), 257–261 | DOI | MR

[8] Kamalutdinov A. M., Paimushin V. N., “Refined geometrically nonlinear equations of motion for elongated rod-type plate”, Russ. Math., 60:9 (2016), 74–78 | DOI | MR | Zbl

[9] Egorov A. G., Affane B., “Instability regions in flexural-torsional vibrations of plates”, Lobachevskii J. Math., 41:7 (2020), 1167–1174 | DOI | MR | Zbl

[10] Berdichevskii V. L., Variational Principles of Continuum Mechanics, Nauka, M., 1983, 448 pp. (In Russian)

[11] Vol'mir A. S., Flexible Plates and Shells, Gos. Izd. Tekh.-Teor. Lit., M., 1956, 419 pp. (In Russian)

[12] Reddy J. N., An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics, Oxford Univ. Press, Oxford, 2014, 768 pp. | DOI | MR | Zbl

[13] Mclachlan N. W., Theory and Application of Mathieu Functions, Oxford Univ. Press, N. Y., 1951, 423 pp. | MR

[14] Bolotin V. V., Dynamic Stability of Elastic Systems, Gos. Izd. Tekh.-Teor. Lit., M., 1956, 600 pp. (In Russian)

[15] Wolf G., “Mathieu functions and Hill's equation”, NIST Handbook of Mathematical Functions, eds. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, Ch.W. Clark, Cambridge Univ. Press, Cambridge, 2010, 651–682 | MR

[16] Dunne G. V., Ünsal M., “WKB and resurgence in the Mathieu equation”, Resurgence, Physics and Numbers, eds. Fauvet F., Manchon D., Marmi S., Sauzin D., Edizioni della Normale, Pisa, 2017, 249–298 | DOI | MR | Zbl