On the chromatic number of graphs with some restriction of vertex degrees
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 4, pp. 387-395 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Graphs, for which the degree of a certain vertex is equal to $(d+1)$ and the degrees of all other vertices are at most $d$, $d \geqslant 3$, were considered. Properties were obtained to color vertices of these graphs in $d$ colors.
Keywords: graph, coloring, vertex coloring, chromatic number, degree of vertex in graph.
@article{UZKU_2020_162_4_a0,
     author = {S. N. Selezneva},
     title = {On the chromatic number of graphs with some restriction of vertex degrees},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {387--395},
     year = {2020},
     volume = {162},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2020_162_4_a0/}
}
TY  - JOUR
AU  - S. N. Selezneva
TI  - On the chromatic number of graphs with some restriction of vertex degrees
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2020
SP  - 387
EP  - 395
VL  - 162
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2020_162_4_a0/
LA  - ru
ID  - UZKU_2020_162_4_a0
ER  - 
%0 Journal Article
%A S. N. Selezneva
%T On the chromatic number of graphs with some restriction of vertex degrees
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2020
%P 387-395
%V 162
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2020_162_4_a0/
%G ru
%F UZKU_2020_162_4_a0
S. N. Selezneva. On the chromatic number of graphs with some restriction of vertex degrees. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 4, pp. 387-395. http://geodesic.mathdoc.fr/item/UZKU_2020_162_4_a0/

[1] Emelichev V. A., Mel'nikov O. I., Sarvanov V. I., Tyshkevich R. I., Lectures on Graph Theory, Librokom, M., 2009, 383 pp. (In Russian) | MR

[2] Bondy J. A., Murty U. S. R., Graph Theory, Springer, 2008, 655 pp. | MR | Zbl

[3] Stockmeyer L. J., “Planar $3$-colorability is $NP$-complete”, SIGACT News, 5:3 (1973), 19–25 | DOI

[4] Garey M. R., Johnson D. S., Stockmeyer L., “Some simplified $NP$-complete graph problems”, Theor. Comput. Sci., 1:3 (1976), 237–267 | DOI | MR | Zbl

[5] Malyshev D. S., “A complete classification of the complexity of the vertex 3-colourability problem for quadruples of induced $5$-vertex prohibitions”, Zh. Srednevolzh. Mat. O-va, 22:1 (2020), 38–47 (In Russian) | DOI

[6] Selezneva S. N., Mel'nik M. V., Astakhova A. V., “Coloring of pseudocubic graphs in three colors”, Moscow Univ. Comput. Math. Cybern., 43:2 (2019), 82–88 | DOI | MR | Zbl

[7] Vizing V. G., “Coloring graph vertices in prescribed colors”, A Collection of Papers, Discrete Analysis Methods in the Theory of Codes and Schemes, 29, Inst. Mat. Sib. Otd. SSSR, Novosibirsk, 1976, 3–10 (In Russian)