Bounds of non-monotone complexity for the multi-valued logic functions
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 3, pp. 311-321

Voir la notice du chapitre de livre provenant de la source Math-Net.Ru

The non-monotone complexity of realization of $k$-valued logic functions by circuits in a special basis was investigated. The basis consists of elements of two types: the first type comprises all monotone functions (with respect to the order $012\cdots $) with zero weight; the second type includes non-monotone elements with unit weight, the non-empty set of which is finite. The upper and lower bounds of non-monotone complexity (the minimum number of non-monotone elements) for an arbitrary $k$-valued logic function were established. The difference between the upper and lower bounds does not exceed a universal constant. The difference between the best upper and lower bounds known before is a constant that depends on the basis. The range of values for these constants is infinite.
Keywords: logic circuits, circuit complexity, $k$-valued logic functions, bases with zero weight elements, inversion complexity, non-monotone complexity.
@article{UZKU_2020_162_3_a5,
     author = {V. V. Kochergin and A. V. Mikhailovich},
     title = {Bounds of non-monotone complexity for the multi-valued logic functions},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {311--321},
     publisher = {mathdoc},
     volume = {162},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2020_162_3_a5/}
}
TY  - JOUR
AU  - V. V. Kochergin
AU  - A. V. Mikhailovich
TI  - Bounds of non-monotone complexity for the multi-valued logic functions
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2020
SP  - 311
EP  - 321
VL  - 162
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZKU_2020_162_3_a5/
LA  - ru
ID  - UZKU_2020_162_3_a5
ER  - 
%0 Journal Article
%A V. V. Kochergin
%A A. V. Mikhailovich
%T Bounds of non-monotone complexity for the multi-valued logic functions
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2020
%P 311-321
%V 162
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZKU_2020_162_3_a5/
%G ru
%F UZKU_2020_162_3_a5
V. V. Kochergin; A. V. Mikhailovich. Bounds of non-monotone complexity for the multi-valued logic functions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 3, pp. 311-321. http://geodesic.mathdoc.fr/item/UZKU_2020_162_3_a5/