@article{UZKU_2020_162_2_a8,
author = {A. O. Andreev and Yu. A. Nefedyev and L. A. Nefediev and E. N. Ahmedshina and N. Yu. Demina and A. A. Zagidullin},
title = {The use of multi-parameter analysis and fractal geometry for investigating the structure of the lunar surface},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {223--236},
year = {2020},
volume = {162},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2020_162_2_a8/}
}
TY - JOUR AU - A. O. Andreev AU - Yu. A. Nefedyev AU - L. A. Nefediev AU - E. N. Ahmedshina AU - N. Yu. Demina AU - A. A. Zagidullin TI - The use of multi-parameter analysis and fractal geometry for investigating the structure of the lunar surface JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2020 SP - 223 EP - 236 VL - 162 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2020_162_2_a8/ LA - ru ID - UZKU_2020_162_2_a8 ER -
%0 Journal Article %A A. O. Andreev %A Yu. A. Nefedyev %A L. A. Nefediev %A E. N. Ahmedshina %A N. Yu. Demina %A A. A. Zagidullin %T The use of multi-parameter analysis and fractal geometry for investigating the structure of the lunar surface %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2020 %P 223-236 %V 162 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2020_162_2_a8/ %G ru %F UZKU_2020_162_2_a8
A. O. Andreev; Yu. A. Nefedyev; L. A. Nefediev; E. N. Ahmedshina; N. Yu. Demina; A. A. Zagidullin. The use of multi-parameter analysis and fractal geometry for investigating the structure of the lunar surface. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 2, pp. 223-236. http://geodesic.mathdoc.fr/item/UZKU_2020_162_2_a8/
[1] Smith D. E., Zuber M. T., Neumann G. A., Lemoine F. G., “Topography of the Moon from the Clementine lidar”, J. Geophys. Res.: Planets, 102:E1 (1997), 1591–1611 | DOI
[2] Binder A. B., “Lunar Prospector: Overview”, Science, 281:5328 (1998), 1475–1476 | DOI
[3] Löcher A., Küsche J., “Assessment of the impact of one-way laser ranging on orbit determination of the Lunar Reconnaissance Orbiter”, J. Geod., 93 (2019), 2421–2428 | DOI
[4] Foing B. H., Racca G., Marini A., Koschny D., Frew D., Grieger B., Camino-Ramos O., Josset J. L., Grande M., “SMART-1 technology, scientific results and heritage for future space missions”, Planet. Space Sci., 151 (2018), 141–148 | DOI
[5] Araki H., Tazawa S., Noda H., Ishihara Y., Goossens S., Sasaki S., Kawano N., Kamiya I., Otake H., Oberst J., Shum C., “Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry”, Science, 323:5916 (2009), 897–900 | DOI
[6] Di K., Xu B., Peng M., Yue Z., Liu Z., Wan W., Li L., Zhou J., “Rock size-frequency distribution analysis at the Chang'E-3 landing site”, Planet. Space Sci., 120 (2016), 103–112 | DOI
[7] Wang Q., Liu J., “A Change-4 mission concept and vision of future Chinese lunar exploration activities”, Acta Astronautica, 127 (2016), 678–683 | DOI
[8] Keller J. W., Petro N. E., Vondrak R. R., “The Lunar Reconnaissance Orbiter Mission – Six years of science and exploration at the Moon”, Icarus, 273 (2016), 2–24 | DOI
[9] Shanmugam M., Vadawale S. V., Patel A., Goyal S. K., Ladiya T., Acharya Y. B., Pal S., Nanal V., “Investigation of radiation damage due to particle irradiation on Silicon Drift Detector for Chandrayaan-2 mission”, J. Instrumentation, 15:1 (2020), 1002–1002 | DOI
[10] Sood R., Chappaz L., Melosh H. J., Howell K. C., Milbury C., Blair D. M., Zuber M. T., “Detection and characterization of buried lunar craters with GRAIL data”, Icarus, 289 (2017), 157–172 | DOI
[11] Hareyama M., Ishihara Y., Demura H., Hirata N., Honda C., Kamata S., Karoji Y., Kimura J., Morota T., Nagaoka H., Nakamura R., Yamamoto S., Ohtake M., “Global classification of lunar reflectance spectra obtained by Kaguya (SELENE): Implication for hidden basaltic materials”, Icarus, 321 (2018), 407–425 | DOI
[12] Shirenin A. M., Mazurova E. M., Bagrov A. V., “Development of a high-precision selenodetic coordinate system for the physical surface of the Moon based on LED beacons on its surface”, Cosmic Res., 54:6 (2016), 452–457 | DOI
[13] Bagrov A. V., Leonov V. A., Mitkin A. S., Nasyrov A. F., Ponomarenko A. D., Pichkhadze K. M., Sysoev V. K., “Single-satellite global positioning system”, Acta Astronaut., 117 (2015), 332–337 | DOI
[14] Andreev A., Nefedyev Y., Demina N., Petrova N., Demin S., Zagidullin A., “Analysis of dynamical and quasidynamical space coordinate systems”, AIAA SPACE Astronaut. Forum Expo., 2017, 1–6 | DOI
[15] Rizvanov N., Nefedjev Ju., “Photographic observations of Solar System bodies at the Engelhardt astronomical observatory”, Astron. Astrophys., 444:2 (2005), 625–627 | DOI
[16] Valeev S., Samokhvalov K., “The ARM-approach based local modelling of the gravitational field”, Computational Science, ICCS 2003, Lecture Notes in Computer Science, 2658, eds. Sloot P. M. A., Abramson D., Bogdanov A. V., Gorbachev Y. E., Dongarra J. J., Zomaya A. Y., Springer, Berlin–Heidelberg, 2003, 471–480 | DOI | MR | Zbl
[17] Chrysochoou C., Rutishauser C., Rauber-Lüthy C., Neuhaus T., Boltshauser E., Superti-Furga A., “An 11-month-old boy with psychomotor regression and auto-aggressive behavior”, Eur. J. Pediatr., 162:7–8 (2003), 559–561 | DOI
[18] Queffélec H., Volný D., “On martingale approximation of adapted processes”, J. Theor. Probab., 25:2 (2011), 438–449 | DOI | MR
[19] Valeev S. G., “Coordinates of the Moon reverse side sector objects”, Earth, Moon, and Planets, 34:3 (1986), 251–271 | DOI
[20] Nefedyev Y. A., Valeev S. G., Mikeev R. R., Andreev A. O., Varaksina N. Y., “Analysis of data of “CLEMENTINE” and “KAGUYA” missions and “ULCN” and “KSC-1162” catalogues”, Adv. Space Res., 50:11 (2012), 1564–1569 | DOI
[21] Andreev A. O., Demina N. Y., Nefedyev Y. A., Demin S. A., Zagidullin A. A., “Modeling of the physical selenocentric surface using modern satellite observations and harmonic analysis methods”, J. Phys.: Conf. Ser., 1038 (2018), 012003, 1–6 | DOI
[22] Nefedyev Yu.A., Andreev A. O., Petrova N. K., Demina N.Yu., Zagidullin A. A., “Creation of a global selenocentric coordinate reference frame”, Astron. Rep., 62:12 (2018), 1016–1020 | DOI
[23] Kokhanov A. A., Karachevtseva I. P., Zubarev A. E., Patraty V., Rodionova Z. F., Oberst J., “Mapping of potential lunar landing areas using LRO and SELENE data”, Planet. Space Sci., 162 (2018), 179–189 | DOI
[24] Goossens S., Mazarico E., Ishihara Y., Archinal B., Gaddis L., “Improving the geometry of Kaguya extended mission data through refined orbit determination using laser altimetry”, Icarus, 336 (2020), 113454, 1–13 | DOI
[25] Williams J. G., Konopliv A. S., Boggs D. H., Park R. S., Yuan D.-N., Lemoine F. G., Goossens S., Mazarico E., Nimmo F., Weber R. C., Asmar S. W., Melosh H. J., Neumann G. A., Phillips R. J., Smith D. E., Solomon S. C., Watkins M. M., Wieczorek M. A., Andrews-Hanna J. C., Head J. W., Kiefer W. S., Matsuyama I., McGovern P. J., Taylor G. J., Zuber M. T., “Lunar interior properties from the GRAIL mission”, J. Geophys. Res.: Planets, 119:7 (2014), 1546–1578 | DOI
[26] Kim K. J., Wöhler C., Berezhnoy A. A., Bhatt M., Grumpe A., “Prospective $^3$He-rich landing sites on the Moon”, Planet. Space Sci., 177 (2019), 104686, 1–9 | DOI
[27] Trigo G. F., Maass B., Krüger H., Theil S., “Hybrid optical navigation by crater detection for lunar pin-point landing: Trajectories from helicopter flight tests”, CEAS Space J., 10 (2018), 567–581 | DOI
[28] Mikrin E. A., Mikhailov M. V., Orlovskii I. V., Rozhkov S. N., Krasnopol'skii I. A., “Satellite navigation of lunar orbiting spacecraft and objects on the lunar surface”, Gyroscopy Navig., 10:2 (2019), 54–61 | DOI