Estimation of the heterogeneity of the reservoir fluid inflow to the cross-sectional contour of a vertical well
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 2, pp. 180-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The reasons for the heterogeneity of the reservoir fluid inflow to the cross-sectional contour of a vertical well can be: a) asymmetry of the external pressure field relative to the well axis as a result of the interference of the surrounding wells; b) heterogeneity of the permeability field near the well, which is a consequence of either the heterogeneity of the absolute permeability field of the reservoir or the mobility function of the multiphase mixture of formation fluids. To simulate filtration in a reservoir over a relatively long time interval, the main interest is constant or long-term factors associated with well spacing and the distribution of absolute permeability. In the work, solutions of two model problems were constructed, which allow a quantitative evaluation of the influence of both factors on the degree of inhomogeneity of the inflow to the well and indicate the conditions under which this effect becomes significant. The obtained estimates are intended primarily for computational schemes of streamline and streamtube methods, which require a high degree of solution detailing near wells.
Mots-clés : oil reservoir, influx profile
Keywords: aquifer, vertical well, single-phase flow, well bore cross-section, permeability field heterogeneity, wells interference, numerical simulation, fine computational grid, streamline, streamtube.
@article{UZKU_2020_162_2_a5,
     author = {K. A. Potashev and R. R. Akhunov},
     title = {Estimation of the heterogeneity of the reservoir fluid inflow to the cross-sectional contour of a vertical well},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {180--192},
     year = {2020},
     volume = {162},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2020_162_2_a5/}
}
TY  - JOUR
AU  - K. A. Potashev
AU  - R. R. Akhunov
TI  - Estimation of the heterogeneity of the reservoir fluid inflow to the cross-sectional contour of a vertical well
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2020
SP  - 180
EP  - 192
VL  - 162
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2020_162_2_a5/
LA  - ru
ID  - UZKU_2020_162_2_a5
ER  - 
%0 Journal Article
%A K. A. Potashev
%A R. R. Akhunov
%T Estimation of the heterogeneity of the reservoir fluid inflow to the cross-sectional contour of a vertical well
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2020
%P 180-192
%V 162
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2020_162_2_a5/
%G ru
%F UZKU_2020_162_2_a5
K. A. Potashev; R. R. Akhunov. Estimation of the heterogeneity of the reservoir fluid inflow to the cross-sectional contour of a vertical well. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 2, pp. 180-192. http://geodesic.mathdoc.fr/item/UZKU_2020_162_2_a5/

[1] Aziz K., Settari A., Petroleum Reservoirs Simulation, Appl. Sci. Publ., London, 1979, 476 pp.

[2] Kanevskaya R. D., Simulation of Hydrodynamic Processes of Hydrocarbons Development, Inst. Komp'yut. Issled., M.–Izhevsk, 2003, 128 pp. (In Russian) | MR

[3] Khisamov R. S., Ibatullin R. R., Nikiforov A. I., Ivanov A. F., Nizaev R. Kh., Theory and Practice of Oilfield Development Simulation for Various Geologic Conditions, Izd. “Fen” Akad. Nauk RT, Kazan, 2009, 239 pp. (In Russian)

[4] Mazo A. B., Potashev K. A., Superelements. Oilfield Development Simulation, INFRA-M, M., 2020, 220 pp. (In Russian)

[5] Dumkwu F. A., Islam A. W., Carlson E. S., “Review of well models and assessment of their impacts on numerical reservoir simulation performance”, J. Pet. Sci. Eng., 82–83 (2012), 174–186 | DOI

[6] Charnyi I. A., Subsurface Fluid and Gas Dynamics, Gostoptekhizdat, M., 1963, 396 pp. (In Russian)

[7] Thiele M. R., Modeling multiphase flow in heterogeneous media using streamtubes, PhD Diss., 1994, 217 pp. https://www.streamsim.com/papers/thielephd.pdf

[8] Al-Najem A. A., Siddiqui S., Soliman M., Yuen B., “Streamline simulation technology: Evolution and recent trends”, SPE Saudi Arabia Sect. Tech. Symp. Exhib. (8–11 April, Al-Khobar, Saudi Arabia), 2012, SPE-160894-MS, 22 pp. | DOI

[9] Potashev K. A., Mazo A. B., Ramazanov R. G., Bulygin D. V., “Analysis and design of a section of an oil reservoir using a fixed stream tube model”, Neft'. Gaz. Novatsii, 187:4 (2016), 32–40 (In Russian) | MR

[10] Mazo A. B., Potashev K. A., Baushin V. V., Bulygin D. V., “Numerical simulation of oil reservoir polymer flooding by the model of fixed stream tube”, Georesursy, 19:1 (2017), 15–20 (In Russian)

[11] Potashev K. A., Mazo A. B., “Numerical simulation of a localized impact on the oil reservoir using fixed stream tubes for typical flooding schemes”, Georesursy, 22:4 (2017) (In Russian)

[12] Emanuel A. S., Milliken W. J., “Application of streamtube techniques to full-field waterflooding simulation”, SPE Res. Eng., 3:12 (1997), 211–217 | DOI

[13] Inogamov N. A., Khabeev N. S., “Using the method of “rigid stream tubes” for calculating the micellar-polymer flooding of staggered wells”, Inzh.-Fiz. Zh., 80:1 (2007), 15–21 (In Russian)

[14] Slotte P. A., Berg C. F., Lecture Notes in Well-Testing, Dep. Geosci. Pet. NTNU, 2019, 156 pp. http://folk.ntnu.no/perarnsl/Literatur/lecture_notes.pdf

[15] Potashev K. A., Abdrashitova L. R., “Accounting the heterogeneous waterflooding of the near-well drainage area for coarse scale simulation of petroleum reservoir”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 1, 2017, 116–129 (In Russian) | MR

[16] Barenblatt G. I., Entov V. M., Ryzhik V. M., The Motion of Fluids and Gases in Natural Strata, Nedra, M., 1984, 211 pp. (In Russian)

[17] Demidov D. E., Egorov A. G., Nuriev A. N., “Application of NVIDIA CUDA technology for numerical solution of hydrodinamic problems”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 152, no. 1, 2010, 142–154 (In Russian) | MR

[18] Kurganov A. M., Buglinskaya E. E., Groundwater Intakes, SPbGASU, St. Petersburg, 2009, 80 pp. (In Russian)