@article{UZKU_2020_162_2_a2,
author = {E. G. Glazova and S. V. Krylov and D. T. Chekmarev},
title = {Numerical simulation of the ice sphere impact onto the barrier},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {137--147},
year = {2020},
volume = {162},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2020_162_2_a2/}
}
TY - JOUR AU - E. G. Glazova AU - S. V. Krylov AU - D. T. Chekmarev TI - Numerical simulation of the ice sphere impact onto the barrier JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2020 SP - 137 EP - 147 VL - 162 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2020_162_2_a2/ LA - ru ID - UZKU_2020_162_2_a2 ER -
%0 Journal Article %A E. G. Glazova %A S. V. Krylov %A D. T. Chekmarev %T Numerical simulation of the ice sphere impact onto the barrier %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2020 %P 137-147 %V 162 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2020_162_2_a2/ %G ru %F UZKU_2020_162_2_a2
E. G. Glazova; S. V. Krylov; D. T. Chekmarev. Numerical simulation of the ice sphere impact onto the barrier. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 2, pp. 137-147. http://geodesic.mathdoc.fr/item/UZKU_2020_162_2_a2/
[1] Schulson E. M., “Brittle failure of ice”, Eng. Fract. Mech., 68:17–18 (2001), 1839–1887 | DOI
[2] Carney K. S., Benson D. J., DuBois P., Lee R., “A phenomenological high strain rate model with failure for ice”, Int. J. Solids Struct., 43:25–26 (2006), 7820–7839 | DOI | Zbl
[3] Pernas-Sánchez J., Pedroche D. A., Varas D., López-Puente J., Zaera R., “Numerical modeling of ice behavior under high velocity impacts”, Int. J. Solids Struct., 49:14 (2012), 1919–1927 | DOI
[4] Anghileri M., Castelletti L.-M.L., Invernizzi F., Mascheroni M., “A survey of numerical models for hail impact analysis using explicit finite element codes”, Int. J. Impact Eng., 31:8 (2005), 929–944 | DOI | MR
[5] Tippmann J. D., Kim H., Rhymer D., “Experimentally validated strain rate dependent material model for spherical ice impact simulation”, Int. J. Impact Eng., 57 (2013), 43–54 | DOI
[6] Sun J., Lam N., Zhang L., Ruan D., Gad E., “Contact forces generated by hailstone impact”, Int. J. Impact Eng., 84 (2015), 145–158 | DOI
[7] Dousset S., Girardot J., Dau F., Gakwaya A., “Prediction procedure for hail impact”, EPJ Web Conf., 183 (2018), 01046, 1–6 | DOI
[8] Lobanov V. A., “Modelling of ice interaction with constructions”, Vestn. Nauchno-Tekh. Razvit., 2011, no. 10, 31–39 (In Russian)
[9] Gerasimov A. V. (ed.), Theoretical and Experimental Studies on High-Velocity Interaction of Bodies, Izd. Tomsk. Univ., Tomsk, 2007, 572 pp. (In Russian)
[10] Glazyrin V. P., Orlova Yu.N., “Numerical investigation of freshwater ice behavior under the action compact impactors in subsonic of speeds”, Tr. Tomsk. Gos. Univ., 273:2 (2009), 209–212 (In Russian)
[11] Glazyrin V. P., Orlov M.Yu., Orlova Yu.N., “Computer modeling of penetration of a large-sized striker in water-ice media”, Tr. Tomsk. Gos. Univ. Ser. Fiz.-Mat., 292 (2012), 329–334 (In Russian)
[12] Glazyrin V. P., Orlov M.Yu., Orlova Yu.N., “Analysis of ice striker penetration into barriers”, Izv. Vyssh. Uchebn. Zaved., Fiz., 56:7–3 (2013), 41–44 (In Russian)
[13] Tsuprik V. G., “Theoretical research on the specific energy of mechanical fracture of sea ice”, Vestn. NGU. Ser. Mat., Mekh., Inform., 13:2 (2013), 119–125 (In Russian)
[14] Kraus E. I., Melnikov A.Yu., Fomin V. M., Shabalin I. I., “Penetration of Steel projectiles through finite-thickness ice targets”, J. Appl. Mech. Tech. Phys., 60:3 (2019), 526–532 | DOI | DOI
[15] Grigoryan S. S. Fundamental concepts of soil dynamics, Prikl. Mat. Mekh., 24:6 (1960), 1057–1072 (In Russian)
[16] Bragov A., Igumnov L., Konstantinov A., Lomunov A., Filippov A., Shmotin Yu., Didenko R., Krundaeva A., “Investigation of strength properties of freshwater ice”, EPJ Web Conf., 94 (2015), 01070 | DOI
[17] Balandin V. V., Krylov S. V., Poverennov E.Yu., Sadovskii V. V., “Numerical simulation of shock interaction of an elastic cylinder with ice”, Probl. Pochn. Plast., 79:1 (2017), 93–103 (In Russian) | DOI
[18] Fomin V. M., Gulidov A. I., Sapozhnikov G. A., Shabalin I. I., Babakov V. A., Kuropatenko V. F., Kiselev A. B., Trishin Yu.A., Sadyrin A. I., Kiselev S. P., Golovlev I. F., High-Velocity Interaction of Bodies, Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1999, 600 pp. (In Russian)
[19] Sadyrin A. I., “A model of dynamic deformation and fracture of concrete”, Probl. Pochn. Plast., 2003, no. 65, 5–14 (In Russian)
[20] Abuzyarov K. M., Abuzyarov M. Kh., Glazova E. G., Kochetkov A. V., Krylov S. V., “Simulation of three-dimensional dynamic interaction of constructions with media on the basis of S.K. Godunov's scheme and multi-mesh algorithms”, Proc. Int. Conf. “Supercomputation and Mathematical Simulation” (Oct. 15–19, 2018), ed. Shagaliev R. M., FGUP “RFYaTs-VNIIEF”, Sarov, 2019, 18–23 (In Russian)
[21] Abuzyarov M. Kh., Krylov S. V., Tsvetkova E. V., “Simulation of the hydro-elastoplastic interaction using the UPSGOD codes”, Probl. Pochn. Plast., 2013, no. 75, 25–32 (In Russian)