@article{UZKU_2020_162_1_a6,
author = {R. F. Salimov and I. A. Kareev},
title = {Binomial probability estimates with restrictions on their $d$-risks},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {91--97},
year = {2020},
volume = {162},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a6/}
}
TY - JOUR AU - R. F. Salimov AU - I. A. Kareev TI - Binomial probability estimates with restrictions on their $d$-risks JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2020 SP - 91 EP - 97 VL - 162 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a6/ LA - ru ID - UZKU_2020_162_1_a6 ER -
%0 Journal Article %A R. F. Salimov %A I. A. Kareev %T Binomial probability estimates with restrictions on their $d$-risks %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2020 %P 91-97 %V 162 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a6/ %G ru %F UZKU_2020_162_1_a6
R. F. Salimov; I. A. Kareev. Binomial probability estimates with restrictions on their $d$-risks. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 1, pp. 91-97. http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a6/
[1] Salimov R. F., Turilova E. A., Volodin I. N., “Sequential procedures for assessing the percentage of harmful impurities with the given limitations on the accuracy and reliability of statistical inference”, 16th Int. Multidiscip. Sci. GeoConf. SGEM 2016, SGEM Vienna GREEN Ext. Sci. Sess.: SGEM2016 Conf. Proc., Book 1, v. 4, 2016, 175–180 | DOI
[2] Salimov R. F., Yang S.-F., Turilova E. A., Volodin I. N., “Estimation of the mean value for the normal distribution with constraints on $d$-risk”, Lobachevskii J. Math., 39:3 (2018), 377–387 | DOI | MR | Zbl
[3] Salimov R. F., Volodin I. N., Nasibullina N. F., “Sequential $d$-guaranteed estimate of the normal mean with bounded relative error”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 161, no. 1, 2019, 145–151 | DOI | MR
[4] Lehmann E. L., Theory of Point Estimation, John Wiley Sons, 1983, 506 pp. | MR | Zbl
[5] Simushkin S. V., Volodin I. N., “Statistical inference with a minimal $d$-risk”, Lect. Notes Math., 1021, 1983, 629–636 | DOI | MR
[6] Simushkin S. V., Volodin I. N., “Statistical inference with minimum $d$-risk”, J. Sov. Math., 42:1 (1988), 1464–1472 | DOI | MR | Zbl | Zbl
[7] Zaikin A. A., “Estimates with asymptotically uniformly minimal $d$-risk”, Theory Probab. Its Appl., 63:3 (2019), 500–505 | DOI | DOI | MR | Zbl
[8] Volodin I. N., “Guaranteed statistical inference procedures (determination of the optimal sample size)”, J. Sov. Math., 44:5 (1989), 568–600 | DOI | MR | Zbl | Zbl
[9] Gupta A. K., Nadarajah S., Handbook of Beta Distribution and Applications, Marcel Dekker, N. Y., 2004, 600 pp. | MR | Zbl
[10] Belyayev Yu.K., Probabilistic Methods in Sample Control, Nauka, M., 1975, 408 pp. (In Russian)
[11] Volodin I. N., “Optimum sample size in statistical inference procedures”, Izv. Vyssh. Uchebn. Zaved., Mat., 1978, no. 21, 33–45 (In Russian) | Zbl
[12] Lutsenko M. M., “A game theoretic method for estimation of a parameter of the binomial law”, Theory Probab. Its Appl., 35:3 (1990), 467–477 | DOI | MR