Binomial probability estimates with restrictions on their $d$-risks
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 1, pp. 91-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The standard problem of assessing the proportion of substandard products was considered in the framework of the Bayesian paradigm in the sense of the problem of optimal estimation. This problem was reduced to assessing the probability of success in a binomial scheme with a quadratic loss function for which a prior beta distribution applies. Unlike the classical approach to parameter estimation, we used the $d$-posterior approach to construct statistical guarantee solutions. Estimates with the uniformly minimal $d$-risk and the Bayesian estimate are constructed. The last one is necessary for designing a $d$-guaranteed sequential “first crossing” procedure. The sequential procedure leads to significant reduction of the inspection volume of products batch. In this regard, the task of planning the volume of tests that guarantees a given restriction on $d$-risk was solved.
Keywords: binomial probability estimate, Bayesian estimate, estimate with uniformly minimal $d$-risk, quadratic loss function, prior Beta distribution, necessary sample size.
@article{UZKU_2020_162_1_a6,
     author = {R. F. Salimov and I. A. Kareev},
     title = {Binomial probability estimates with restrictions on their $d$-risks},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {91--97},
     year = {2020},
     volume = {162},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a6/}
}
TY  - JOUR
AU  - R. F. Salimov
AU  - I. A. Kareev
TI  - Binomial probability estimates with restrictions on their $d$-risks
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2020
SP  - 91
EP  - 97
VL  - 162
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a6/
LA  - ru
ID  - UZKU_2020_162_1_a6
ER  - 
%0 Journal Article
%A R. F. Salimov
%A I. A. Kareev
%T Binomial probability estimates with restrictions on their $d$-risks
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2020
%P 91-97
%V 162
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a6/
%G ru
%F UZKU_2020_162_1_a6
R. F. Salimov; I. A. Kareev. Binomial probability estimates with restrictions on their $d$-risks. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 1, pp. 91-97. http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a6/

[1] Salimov R. F., Turilova E. A., Volodin I. N., “Sequential procedures for assessing the percentage of harmful impurities with the given limitations on the accuracy and reliability of statistical inference”, 16th Int. Multidiscip. Sci. GeoConf. SGEM 2016, SGEM Vienna GREEN Ext. Sci. Sess.: SGEM2016 Conf. Proc., Book 1, v. 4, 2016, 175–180 | DOI

[2] Salimov R. F., Yang S.-F., Turilova E. A., Volodin I. N., “Estimation of the mean value for the normal distribution with constraints on $d$-risk”, Lobachevskii J. Math., 39:3 (2018), 377–387 | DOI | MR | Zbl

[3] Salimov R. F., Volodin I. N., Nasibullina N. F., “Sequential $d$-guaranteed estimate of the normal mean with bounded relative error”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 161, no. 1, 2019, 145–151 | DOI | MR

[4] Lehmann E. L., Theory of Point Estimation, John Wiley Sons, 1983, 506 pp. | MR | Zbl

[5] Simushkin S. V., Volodin I. N., “Statistical inference with a minimal $d$-risk”, Lect. Notes Math., 1021, 1983, 629–636 | DOI | MR

[6] Simushkin S. V., Volodin I. N., “Statistical inference with minimum $d$-risk”, J. Sov. Math., 42:1 (1988), 1464–1472 | DOI | MR | Zbl | Zbl

[7] Zaikin A. A., “Estimates with asymptotically uniformly minimal $d$-risk”, Theory Probab. Its Appl., 63:3 (2019), 500–505 | DOI | DOI | MR | Zbl

[8] Volodin I. N., “Guaranteed statistical inference procedures (determination of the optimal sample size)”, J. Sov. Math., 44:5 (1989), 568–600 | DOI | MR | Zbl | Zbl

[9] Gupta A. K., Nadarajah S., Handbook of Beta Distribution and Applications, Marcel Dekker, N. Y., 2004, 600 pp. | MR | Zbl

[10] Belyayev Yu.K., Probabilistic Methods in Sample Control, Nauka, M., 1975, 408 pp. (In Russian)

[11] Volodin I. N., “Optimum sample size in statistical inference procedures”, Izv. Vyssh. Uchebn. Zaved., Mat., 1978, no. 21, 33–45 (In Russian) | Zbl

[12] Lutsenko M. M., “A game theoretic method for estimation of a parameter of the binomial law”, Theory Probab. Its Appl., 35:3 (1990), 467–477 | DOI | MR