@article{UZKU_2020_162_1_a5,
author = {V. I. Pan'zhenskii and A. O. Rastrepina},
title = {The left-invariant contact metric structure on the {Sol} manifold},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {77--90},
year = {2020},
volume = {162},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a5/}
}
TY - JOUR AU - V. I. Pan'zhenskii AU - A. O. Rastrepina TI - The left-invariant contact metric structure on the Sol manifold JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2020 SP - 77 EP - 90 VL - 162 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a5/ LA - ru ID - UZKU_2020_162_1_a5 ER -
%0 Journal Article %A V. I. Pan'zhenskii %A A. O. Rastrepina %T The left-invariant contact metric structure on the Sol manifold %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2020 %P 77-90 %V 162 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a5/ %G ru %F UZKU_2020_162_1_a5
V. I. Pan'zhenskii; A. O. Rastrepina. The left-invariant contact metric structure on the Sol manifold. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 1, pp. 77-90. http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a5/
[1] Thurston W. P., The Geometry and Topology of Three-Manifold, ed. S. Levy, Princeton Univ. Press, Princeton, 1997, 328 pp. | MR
[2] Scott P., The Geometries of 3-Manifolds, ed. Arnol'd V.I., Mir, M., 1986, 164 pp. (In Russian)
[3] Sasaki S., “On differentiable manifolds with certain structures which are closely related to almost contact structure, I”, Tohoku Math. J. (2), 12:3 (1960), 459–476 | DOI | MR | Zbl
[4] Blair D. E., Contact Manifolds in Riemannian Geometry, Springer, Berlin–N. Y., 1976, 148 pp. | DOI | MR | Zbl
[5] Kirichenko V. F., Differential-Geometric Structures on Manifolds, Pechatnyi Dom, Odessa, 2013, 458 pp. (In Russian)
[6] Pan'zhenskii V. I., Klimova T. R., “The contact metric connection on the Heisenberg group”, Russ. Math., 62:11 (2018), 45–52 | DOI | MR | Zbl
[7] Agrachev A., Barilari D., Boscain U., Introduction to Riemannian and Sub-Riemannian Geometry, SISSA, Trieste, Italy, 2012, 179 pp. | MR
[8] Agrachev A. A., “Topics in sub-Riemannian geometry”, Russ. Math. Surv., 71:6 (2016), 989–1019 | DOI | DOI | MR | MR | Zbl
[9] Vershik A. M., Faddeev L. D., “Lagrangian mechanics in invariant form”, Problems of Theoretical Physics, eds. Veselov M. G. et al., Izd. LGU, L., 1975, 129–141 (In Russian)
[10] Vershik A. M., Gershkovich V. Ya., “Nonholonomic dynamical systems. Geometry of distributions and variational problems”, Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat. Fundam. Napravleniya, 16, 1987, 5–85 (In Russian)
[11] Jano K., Bochner S., Curvature and Betty Numbers, Izd. Inostr. Lit., M., 1957, 152 pp. (In Russian)
[12] Norden A. P., Affine Connection Spaces, Nauka, M., 1976, 432 pp. (In Russian) | MR
[13] Gordeeva I. A., Pan'zhenskii V. I., Stepanov S. E., “Riemann–Cartan manifolds”, J. Math. Sci., 169:3 (2010), 342–361 | DOI | MR | Zbl
[14] Gromoll D., Klingenberg W., Meyer W., Riemannian Geometry as a Whole, ed. Toponogov V. A., Mir, M., 1971, 343 pp. (In Russian)