The left-invariant contact metric structure on the Sol manifold
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 1, pp. 77-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Among the known eight-dimensional Thurston geometries, there is a geometry of the Sol manifold – a Lie group consisting of real special matrices. For a left-invariant Riemannian metric on the Sol manifold, the left shift group is a maximal simple transitive group of isometry. In this paper, we found all left-invariant differential 1-forms and proved that on the oriented Sol manifold there is only one left-invariant differential 1-form, such that this form and the left-invariant Riemannian metric together define the contact metric structure on the Sol manifold. We identified all left-invariant contact metric connections and distinguished flat connections among them. A completely non-holonomic contact distribution along with the restriction of a Riemannian metric to this distribution define the contact metric structure on the Sol manifold, and an orthogonal projection of the Levi-Chivita connection is a truncated connection. We obtained geodesic parameter equations of the truncated connection, which are the sub-geodesic equations, using a non-holonomic field of frames adapted to the contact metric structure. We revealed that these geodesics are a part of the geodesics of the flat contact metric connection.
Keywords: Sol manifold, contact metric structure, contact metric connection, sub-Riemannian geodesics.
@article{UZKU_2020_162_1_a5,
     author = {V. I. Pan'zhenskii and A. O. Rastrepina},
     title = {The left-invariant contact metric structure on the {Sol} manifold},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {77--90},
     year = {2020},
     volume = {162},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a5/}
}
TY  - JOUR
AU  - V. I. Pan'zhenskii
AU  - A. O. Rastrepina
TI  - The left-invariant contact metric structure on the Sol manifold
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2020
SP  - 77
EP  - 90
VL  - 162
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a5/
LA  - ru
ID  - UZKU_2020_162_1_a5
ER  - 
%0 Journal Article
%A V. I. Pan'zhenskii
%A A. O. Rastrepina
%T The left-invariant contact metric structure on the Sol manifold
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2020
%P 77-90
%V 162
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a5/
%G ru
%F UZKU_2020_162_1_a5
V. I. Pan'zhenskii; A. O. Rastrepina. The left-invariant contact metric structure on the Sol manifold. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 1, pp. 77-90. http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a5/

[1] Thurston W. P., The Geometry and Topology of Three-Manifold, ed. S. Levy, Princeton Univ. Press, Princeton, 1997, 328 pp. | MR

[2] Scott P., The Geometries of 3-Manifolds, ed. Arnol'd V.I., Mir, M., 1986, 164 pp. (In Russian)

[3] Sasaki S., “On differentiable manifolds with certain structures which are closely related to almost contact structure, I”, Tohoku Math. J. (2), 12:3 (1960), 459–476 | DOI | MR | Zbl

[4] Blair D. E., Contact Manifolds in Riemannian Geometry, Springer, Berlin–N. Y., 1976, 148 pp. | DOI | MR | Zbl

[5] Kirichenko V. F., Differential-Geometric Structures on Manifolds, Pechatnyi Dom, Odessa, 2013, 458 pp. (In Russian)

[6] Pan'zhenskii V. I., Klimova T. R., “The contact metric connection on the Heisenberg group”, Russ. Math., 62:11 (2018), 45–52 | DOI | MR | Zbl

[7] Agrachev A., Barilari D., Boscain U., Introduction to Riemannian and Sub-Riemannian Geometry, SISSA, Trieste, Italy, 2012, 179 pp. | MR

[8] Agrachev A. A., “Topics in sub-Riemannian geometry”, Russ. Math. Surv., 71:6 (2016), 989–1019 | DOI | DOI | MR | MR | Zbl

[9] Vershik A. M., Faddeev L. D., “Lagrangian mechanics in invariant form”, Problems of Theoretical Physics, eds. Veselov M. G. et al., Izd. LGU, L., 1975, 129–141 (In Russian)

[10] Vershik A. M., Gershkovich V. Ya., “Nonholonomic dynamical systems. Geometry of distributions and variational problems”, Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat. Fundam. Napravleniya, 16, 1987, 5–85 (In Russian)

[11] Jano K., Bochner S., Curvature and Betty Numbers, Izd. Inostr. Lit., M., 1957, 152 pp. (In Russian)

[12] Norden A. P., Affine Connection Spaces, Nauka, M., 1976, 432 pp. (In Russian) | MR

[13] Gordeeva I. A., Pan'zhenskii V. I., Stepanov S. E., “Riemann–Cartan manifolds”, J. Math. Sci., 169:3 (2010), 342–361 | DOI | MR | Zbl

[14] Gromoll D., Klingenberg W., Meyer W., Riemannian Geometry as a Whole, ed. Toponogov V. A., Mir, M., 1971, 343 pp. (In Russian)