The left-invariant contact metric structure on the Sol manifold
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 1, pp. 77-90
Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
Among the known eight-dimensional Thurston geometries, there is a geometry of the Sol manifold – a Lie group consisting of real special matrices. For a left-invariant Riemannian metric on the Sol manifold, the left shift group is a maximal simple transitive group of isometry. In this paper, we found all left-invariant differential 1-forms and proved that on the oriented Sol manifold there is only one left-invariant differential 1-form, such that this form and the left-invariant Riemannian metric together define the contact metric structure on the Sol manifold. We identified all left-invariant contact metric connections and distinguished flat connections among them. A completely non-holonomic contact distribution along with the restriction of a Riemannian metric to this distribution define the contact metric structure on the Sol manifold, and an orthogonal projection of the Levi-Chivita connection is a truncated connection. We obtained geodesic parameter equations of the truncated connection, which are the sub-geodesic equations, using a non-holonomic field of frames adapted to the contact metric structure. We revealed that these geodesics are a part of the geodesics of the flat contact metric connection.
Keywords:
Sol manifold, contact metric structure, contact metric connection, sub-Riemannian geodesics.
@article{UZKU_2020_162_1_a5,
author = {V. I. Pan'zhenskii and A. O. Rastrepina},
title = {The left-invariant contact metric structure on the {Sol} manifold},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {77--90},
publisher = {mathdoc},
volume = {162},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a5/}
}
TY - JOUR AU - V. I. Pan'zhenskii AU - A. O. Rastrepina TI - The left-invariant contact metric structure on the Sol manifold JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2020 SP - 77 EP - 90 VL - 162 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a5/ LA - ru ID - UZKU_2020_162_1_a5 ER -
%0 Journal Article %A V. I. Pan'zhenskii %A A. O. Rastrepina %T The left-invariant contact metric structure on the Sol manifold %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2020 %P 77-90 %V 162 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a5/ %G ru %F UZKU_2020_162_1_a5
V. I. Pan'zhenskii; A. O. Rastrepina. The left-invariant contact metric structure on the Sol manifold. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 1, pp. 77-90. http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a5/