Asymptotic properties of the problem on eigenvibrations of the bar with attached load
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 1, pp. 52-65
Cet article a éte moissonné depuis la source Math-Net.Ru
The ordinary second-order differential eigenvalue problem describing eigenvibrations of an elastic bar with a load attached to its end was investigated. The problem has an increasing sequence of positive simple eigenvalues with a limit point at infinity. To the sequence of eigenvalues, there corresponds a complete orthonormal system of eigenfunctions. In the paper, the behavior of the solutions in dependence on the load mass was studied. More precisely, limit differential eigenvalue problems were formulated and the convergence of the eigenvalues and eigenfunctions of the initial problem to the corresponding eigenvalues and eigenfunctions of the limit problems as load mass tending to infinity were proved. The original differential eigenvalue problem was approximated by the mesh scheme of the finite element method on a uniform grid. Error estimates for approximate eigenvalues and eigenfunctions were established. The results of this paper can be generalized for the cases of more complicated and important applied problems on eigenvibrations of beams, plates, and shells with attached loads.
Keywords:
eigenvibration of bar, eigenvalue, eigenfunction, eigenvalue problem, mesh approximation, finite element method.
@article{UZKU_2020_162_1_a3,
author = {A. A. Samsonov and S. I. Solov'ev and D. M. Korosteleva},
title = {Asymptotic properties of the problem on eigenvibrations of the bar with attached load},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {52--65},
year = {2020},
volume = {162},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a3/}
}
TY - JOUR AU - A. A. Samsonov AU - S. I. Solov'ev AU - D. M. Korosteleva TI - Asymptotic properties of the problem on eigenvibrations of the bar with attached load JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2020 SP - 52 EP - 65 VL - 162 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a3/ LA - ru ID - UZKU_2020_162_1_a3 ER -
%0 Journal Article %A A. A. Samsonov %A S. I. Solov'ev %A D. M. Korosteleva %T Asymptotic properties of the problem on eigenvibrations of the bar with attached load %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2020 %P 52-65 %V 162 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a3/ %G ru %F UZKU_2020_162_1_a3
A. A. Samsonov; S. I. Solov'ev; D. M. Korosteleva. Asymptotic properties of the problem on eigenvibrations of the bar with attached load. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 1, pp. 52-65. http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a3/
[1] Babuška I., Osborn J. E., “Eigenvalue problem”, Handbook of Numerical Analysis, v. II, Finite element methods, eds. P.G. Ciarlet, J.L. Lions, North-Holland, Amsterdam, 1991, 642–787 | MR
[2] Mikhailov V. P., Partial Differential Equations, Nauka, M., 1983, 424 pp. (In Russian)
[3] Tikhonov A. N., Samarskii A. A., Equations of Mathematical Physics, Nauka, M., 1977, 736 pp. (In Russian) | MR
[4] Solov'ev S.I., “Eigenvibrations of a bar with elastically attached load”, Differ. Equations, 53:3 (2017), 409–423 | DOI | MR | Zbl
[5] Andreev L. V., Dyshko A. L., Pavlenko I. D., Dynamics of Plates and Shells with Concentrated Masses, Mashinostroenie, M., 1988, 200 pp. (In Russian)