The influence of strongly turbulized liquid flow parameters on the near-wall transitional flows in the boundary layer
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 1, pp. 38-51
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The effect of the scale and the high intensity of incident-flow turbulence in a boundary layer on a smooth plane plate with rounded edge (experiment T3H) under a zero pressure gradient was analyzed. Using the well-known experimental and calculated data, the modeling problem of the initially laminar boundary layer transfer to the turbulent one was investigated by the numerical methods on the basis of the near-wall modified turbulence model with two additional transfer equations for the turbulent kinetic energy and the turbulence dissipation rate. Turbulent flows modeling near the flat surface with the high level of incident-flow turbulence is complicated by two general problems: the definition and description of the laminar-to-turbulent transfer along the surface and the viscous sublayer precise resolution under the developed turbulent mode. For the inviscid liquid flowing along the flat plate with the high turbulence degree of more than 1%, the turbulence scale and the incident-flow turbulence intensity joint influence on the flow dynamic and integral characteristics in the boundary layer and turbulence parameters was studied in detail.
Keywords: near-wall turbulent flows, mainstream turbulence parameters, turbulent $k$-$\varepsilon$ model, boundary layer, numerical method
Mots-clés : incompressible liquid.
@article{UZKU_2020_162_1_a2,
     author = {V. M. Zubarev},
     title = {The influence of strongly turbulized liquid flow parameters on~the~near-wall transitional flows in~the~boundary layer},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {38--51},
     year = {2020},
     volume = {162},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a2/}
}
TY  - JOUR
AU  - V. M. Zubarev
TI  - The influence of strongly turbulized liquid flow parameters on the near-wall transitional flows in the boundary layer
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2020
SP  - 38
EP  - 51
VL  - 162
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a2/
LA  - ru
ID  - UZKU_2020_162_1_a2
ER  - 
%0 Journal Article
%A V. M. Zubarev
%T The influence of strongly turbulized liquid flow parameters on the near-wall transitional flows in the boundary layer
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2020
%P 38-51
%V 162
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a2/
%G ru
%F UZKU_2020_162_1_a2
V. M. Zubarev. The influence of strongly turbulized liquid flow parameters on the near-wall transitional flows in the boundary layer. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 162 (2020) no. 1, pp. 38-51. http://geodesic.mathdoc.fr/item/UZKU_2020_162_1_a2/

[1] Taylor G. I., “The statistical theory of isotropic turbulence”, J. Aerosp. Sci., 4:8 (1937), 311–315 | DOI | Zbl

[2] Dryden H. L., “Transition from laminar to turbulent flow”, Turbulent Flows and Heat Transfer, ed. Ch.-Ch. Lin, Princeton Univ. Press, Princeton, 1959, 1–74 | DOI | MR

[3] Wilcox D. C., Turbulence Modeling for CFD, DCW Industries Inc, La Canada, California, 1994, xix+460 pp.

[4] Epik E.Ya., “Heat transfer effects in transitions”, Proc. on Turbulent Heat Transfer: Engineering Foundation Conf. (New York, San Diego, California, March 10–15, 1996), 1996, 1–47

[5] Zubarev V. M., “Joint effect of free stream turbulence parameters on flow transition in a boundary layer”, Tepl. Protsessy Tekh., 8:1 (2016), 4–15 (In Russian) | MR

[6] Myong H. K., Kasagi N., “A new approach to the improvement of $k$-$\varepsilon$ turbulence model for wall bounded shear flows”, JSME Int. J., Ser. II, 33:1 (1990), 63–72

[7] Hirschel E. H., Kordulla W., Shear flow in Surface-Oriented Coordinates, Notes on Numerical Fluid Mechanics, 4, Vieweg+Teubner Verlag, 1981, x+266 pp. | DOI | MR

[8] McConnell A. J., Applications of Tensor Analysis, Dover Publ., N. Y., 1957, 318 pp. | MR

[9] Launder B. E., Spalding D. B., “The numerical computation of turbulent flows”, Comput. Methods Appl. Mech. Eng., 3:2 (1974), 269–289 | DOI | Zbl

[10] Patel V. P., Rodi W., Scheuerer G., “Turbulence models for near-wall and low Reynolds number flows: A review”, AIAA J., 23 (1985), 1308–1319 | DOI | MR

[11] Schlichting H., Boundary-Layer Theory, McGraw-Hill, N. Y., 1979, 817 pp. | MR | Zbl

[12] Kolmogorov A. N., “Equations of motion of an incompressible turbulent fluid”, Izv. Akad. Nauk SSSR Fiz., 6:1–2 (1942), 56–58 (In Russian)

[13] Prandtl L., “Über ein neues Formelsystem für die ausgebildete Turbulenz”, Nachr. Akad. Wiss. Goettingen, Math.-Phys. Kl., Vandenhoeck Ruprecht, Göttingen, 1945, 6–19 (In German) | MR

[14] Wang J. H., Jen H. F., Hartel E. O., “Aerofoil heat transfer calculation using a low Reynolds number version of a two-equation turbulence model”, Trans. ASME, J. Eng. Gas Turbines Power, 107:1 (1985), 60–67 | DOI

[15] Zubarev V. M., “Numerical simulation of turbulent incompressible flow with increasing adverse pressure gradient”, J. Eng. Phys. Thermophys., 92:3 (2019), 631–639 | DOI | MR

[16] Loitsyanskii L. G., Mechanics of Liquids and Gases, Nauka, M., 1987, 824 pp. (In Russian)