Investigation of buckling modes of sandwich specimens with facing layers from $[0^\circ]_{s}$ fiber-reinforced plastic under axial compression
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 4, pp. 569-590 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Analytical solutions to the linearized problems on possible macroscale buckling modes of sandwich specimens made from fiber-reinforced plastics with lay-up sequence $[0^\circ]_{s}$ ($s$ is the number of laminas) under axial compression were analyzed. Materials characterized by a physically nonlinear dependence only between the transverse shear stresses and the corresponding shear strains were considered. Linearized equations of equilibrium in a perturbed state obtained on the basis of the previously constructed geometrically nonlinear equations of the theory of sandwich shells with a transversely flexible core were used. The linearized equations are based on the use of S.P. Timoshenko's refined model for the facing layers, which takes into account the transverse compression, as well as on the use of three-dimensional equations of the theory of elasticity, which are simplified by the model of the transversely flexible layer, for the core. The latter allow integration over the thickness with the introduction of two unknown functions (transverse tangential stresses). In the linearized equations used, the physical nonlinearity of the material of the facing layers was taken into account in accordance with the Shanley concept based on the introduction of the tangential transverse shear modulus. In the equations used, there are degenerate terms that correspond to the implementation of purely transverse-shear buckling modes during compression of the specimen in the axial direction (along the fibers). The implementation of these buckling modes is possible for specimens with a considerable relative thickness of the layers package. Based on the analysis of the results obtained, it was shown that failure for these specimens is most likely due to the buckling in such a macroscale flexural-shear mode, which is predominantly transverse-shear and is realized when the compressive stress averaged over the thickness of the facing layers is equal to the shear modulus of the transverse shear of the composite in the vicinity of the end section of the working length of the specimen in its unperturbed state.
Keywords: fiber-reinforced plastic, sandwich specimen, transversely flexible core, linearized equations, buckling modes, analytical solution.
Mots-clés : compression
@article{UZKU_2019_161_4_a7,
     author = {V. N. Paimushin and S. A. Kholmogorov and N. V. Polyakova and M. A. Shishov},
     title = {Investigation of buckling modes of sandwich specimens with facing layers from $[0^\circ]_{s}$ fiber-reinforced plastic under axial compression},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {569--590},
     year = {2019},
     volume = {161},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_4_a7/}
}
TY  - JOUR
AU  - V. N. Paimushin
AU  - S. A. Kholmogorov
AU  - N. V. Polyakova
AU  - M. A. Shishov
TI  - Investigation of buckling modes of sandwich specimens with facing layers from $[0^\circ]_{s}$ fiber-reinforced plastic under axial compression
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2019
SP  - 569
EP  - 590
VL  - 161
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2019_161_4_a7/
LA  - ru
ID  - UZKU_2019_161_4_a7
ER  - 
%0 Journal Article
%A V. N. Paimushin
%A S. A. Kholmogorov
%A N. V. Polyakova
%A M. A. Shishov
%T Investigation of buckling modes of sandwich specimens with facing layers from $[0^\circ]_{s}$ fiber-reinforced plastic under axial compression
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2019
%P 569-590
%V 161
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2019_161_4_a7/
%G ru
%F UZKU_2019_161_4_a7
V. N. Paimushin; S. A. Kholmogorov; N. V. Polyakova; M. A. Shishov. Investigation of buckling modes of sandwich specimens with facing layers from $[0^\circ]_{s}$ fiber-reinforced plastic under axial compression. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 4, pp. 569-590. http://geodesic.mathdoc.fr/item/UZKU_2019_161_4_a7/

[1] Jumahat A., Soutis C., Jones F. R., Hodzic A., “Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading”, Compos. Struct., 92:2 (2010), 295–305 | DOI

[2] Hapke J., Gehrig F., Huber N., Schulte K., Lilleodden E. T., “Compressive failure of UD-CFRP containing void defects: In situ SEM microanalysis”, Compos. Sci. Technol., 71:9 (2011), 1242–1249 | DOI

[3] Niu K., Talreja R., “Modeling of compressive failure in fiber reinforced composites”, Int. J. Solids Struct., 37:17 (2000), 2405–2428 | DOI | Zbl

[4] Naik N. K., Kumar R. S., “Compressive strength of unidirectional composites: Evaluation and comparison of prediction models”, Compos. Struct., 46:3 (1999), 299–308 | DOI

[5] Davidson P., Waas A. M., “Mechanics of kinking in fiber-reinforced composites under compressive loading”, Math. Mech. Solids, 21:6 (2016), 667–684 | DOI | MR | Zbl

[6] Prabhakar P., Waas A. M., “Interaction between kinking and splitting in the compressive failure of unidirectional fiber reinforced laminated composites”, Compos. Struct., 98 (2013), 85–92 | DOI

[7] Pimenta S., Gutkin R., Pinho S. T., Robinson P., “A micromechanical model for kink-band formation: Part I – Experimental study and numerical modelling”, Compos. Sci. Technol., 69:7–8 (2009), 948–955 | DOI

[8] Lee S. H., Yerramalli C. S., Waas A. M., “Compressive splitting response of glass-fiber reinforced unidirectional composites”, Compos. Sci. Technol., 60:16 (2000), 2957–2966 | DOI

[9] Allix O., Feld N., Baranger E., Guimard J.-M., Ha-Minh C., “The compressive behaviour of composites including fiber kinking: Modelling across the scales”, Meccanica, 49:11 (2014), 2571–2586 | DOI | MR

[10] Polilov A. N., Etudes on Composite Mechanics, Fizmatlit, M., 2015, 320 pp. (In Russian)

[11] Guz' A.N., Stability of Elastic Bodies under Finite Deformations, Naukova Dumka, Kiev, 1973, 270 pp. (In Russian)

[12] Bolotin V. V., Novichkov Yu.N., Mechanics of Multilayer Structures, Mashinostroenie, M., 1980, 375 pp. (In Russian)

[13] Lubin G., Handbook of Composites, Springer US, 1982, xi+786 pp. | DOI

[14] Suarez J. A., Whiteside J. B., Hadcock R. N., “The influence of local failure modes on the compressive strength of boron/epoxy”, Composite Materials: Testing and Design, Second Conference, ed. H. Corten, ASTM Int., West Conshohocken, PA, 1972, STP497, 237–256 | DOI

[15] Budiansky B., Fleck N. A., “Compressive failure of fibre composites”, J. Mech. Phys. Solids, 41:1 (1993), 183–211 | DOI | MR

[16] Xu Y.L., Reifsnider K. L., “Micromechanical modeling of composite compressive strength”, J. Compos. Mater., 27:6 (1993), 572–588 | DOI

[17] Zhang G., Latour R. A. Jr., “FRP composite compressive strength and its dependence upon interfacial bond strength, fiber misalignment, and matrix nonlinearity”, J. Thermoplast. Compos. Mater., 6:4 (1993), 298–311 | DOI

[18] Zhang G., Latour R. A. Jr., “An analytical and numerical study of fiber microbuckling”, Compos. Sci. Technol., 51:1 (1994), 95–109 | DOI

[19] Jumahat A., Soutis C., Jones F. R., Hodzic A., “Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading”, Compos. Struct., 92:2 (2010), 295–305 | DOI

[20] Grigoluk E. I., Kulikov G. M., “General direction of development of the theory of multilayered shells”, Mech. Compos. Mater., 24:2 (1988), 231–241 | DOI

[21] Noor A. K., Burton W. S., “Assessment of computational models for multilayered composite shells”, Appl. Mech. Rev., 43:4 (1990), 67–97 | DOI

[22] Piskunov V. G., Rasskazov A. O., “Development the theory of multilayer plates and shells”, Prikl. Mekh., 38:2 (2002), 22–57 (In Russian) | Zbl

[23] Paimushin V. N., “Refined models for an analysis of internal and external buckling modes of a monolayer in a layered composite”, Mech. Compos. Mater., 53:5 (2017), 613–630 | DOI

[24] Paimushin V. N. Kholmogorov S. A., Gazizullin R. K., “Mechanics of unidirectional fiber-reinforced composites: Buckling modes and failure under compression along fibers”, Mech. Compos. Mater., 53:6 (2018), 737–752 | DOI | MR

[25] Kayumov R. A., Lukankin S. A., Paimushin V. N., Kholmogorov S. A., “Identification of mechanical properties of fiber-reinforced composites”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157, no. 4, 2015, 112–132 (In Russian) | MR

[26] Paimushin V. N., Kholmogorov S. A., Makarov M. V., Tarlakovskii D. V., Lukaszewicz A., “Mechanics of fiber composites: Forms of loss of stability and fracture of test specimens resulting from three-point bending tests”, Z. Angew. Math. Mech., 99:1 (2019), e201800063, 1–25 | DOI | MR

[27] Paimushin V. N., Kholmogorov S. A., “Physical-mechanical properties of a fiber-reinforced composite based on an ELUR-P carbon tape and XT-118 binder”, Mech. Compos. Mater., 54:1 (2018), 2–12 | DOI | MR

[28] Paimushin V. N., Kayumov R. A., Tarlakovskii D. V., Kholmogorov S. A., “Deformation model of $[\pm 45]_{S}$ cross-ply fiber reinforced plastics under tension”, Proc. 2nd Int. Conf. on Theoretical, Applied and Experimental Mechanics, ICTAEM 2019, v. 8, 2019, 29–35 | DOI

[29] Paimushin V. N., Kayumov R. A., Kholmogorov S. A., “Deformation features and models of $[\pm 45]_{2s}$ cross-ply fiber-reinforced plastics in tension”, Mech. Compos. Mater., 55:2 (2019), 141–154 | DOI

[30] Paimushin V. N., Gazizullin R. K., Shishov M. A., “Flat internal buckling modes of fibrous composite elements under tension and compression at the mini- and microscale”, J. Appl. Mech. Tech. Phys., 60:3 (2019), 548–559 | DOI | MR | Zbl

[31] Paimushin V. N., Polykova N. V., Kholmogorov S. A., Shishov M. A., “Buckling modes of structural elements of off-axis fiber-reinforced plastics”, Mech. Compos. Mater., 54:2 (2018), 133–144 | DOI

[32] Badriev I. B., Paimushin V. N., Shihov M. A., “Refined equations of the sandwich shells theory with composite external layers and a transverse soft core at average bending”, Lobachevskii J. Math., 40:11 (2019), 1904–1914 | DOI | MR | Zbl

[33] Ivanov V. A., Paimushin V. N., Polyakova T. V., “Refined theory of the stability of three-layer structures (linearized equations of neutral equilibrium and elementary one-dimensional problems)”, Russ. Math., 39:3 (1996), 13–22 | MR | Zbl

[34] Ivanov V. A., Paimushin V. N., “Refined theory of stability of three-layer constructions (Nonlinear equations of subcritical equilibrium of shells with transversal-soft aggregate)”, Russ. Math., 38:11 (1994), 26–39 | MR | Zbl

[35] Grigolyuk E. I., “Equations of sandwich shells with a light filler”, Izv. Akad. Nauk SSSR. Otd. Tekh. Nauk, 1957, no. 1, 77–84 (In Russian) | Zbl

[36] Grugolyuk E. I., “Finite deflections of sandwich shells with a rigid filler”, Izv. Akad. Nauk SSSR. Otd. Tekh. Nauk, 1958, no. 1, 26–34 (In Russian) | Zbl

[37] Mushtari Kh.M., “On the applicability of various theories of sandwich plates and shells”, Izv. Akad. Nauk SSSR. Otd. Tekh. Nauk. Mekh. Mashinostr., 1960, no. 6, 163–165 (In Russian) | Zbl

[38] Mushtari Kh.M., “To the general theory of mildly sloping shells with a core”, Izv. Akad. Nauk SSSR. Otd. Tekh. Nauk. Mekh. Mashinostr., 1961, no. 2, 24–29 (In Russian) | Zbl

[39] Galimov N. K., “To the theory of thin mildly sloping shells with a core under finite deflections”, Nonlinear Theory of Plates and Shells, Kazan. Gos. Univ., Kazan, 1963, 61–95 (In Russian)

[40] Galimov N. K., Mushtari Kh.M., “To the theory of sandwich plates and shells”, Investigations for the Theory of Plates and Shells, 2, Kazan. Gos. Univ., Kazan, 1964, 56–62 (In Russian)

[41] Galimov N. K., “On the application of Legendre polynomials to the construction of refined theories of sandwich plates and shells”, Investigations for the Theory of Plates and Shells, 10, Kazan. Gos. Univ., Kazan, 1973, 371–385 (In Russian)

[42] Grigolyuk E. I., Chulkov P. P., “To the calculation of sandwich plates with a rigid core”, Izv. Akad. Nauk SSSR. Otd. Tekh. Nauk. Mekh. Mashinostr., 1964, no. 1, 67–74 (In Russian) | Zbl

[43] Grigoluk E. I., Chulkov P. P., Critical Loads of Cylindrical and Conical Sandwich Shells, Novosibirsk, 1966, 223 pp. (In Russian)

[44] Grigolyuk E. I., Chulkov P. P., Buckling and Vibrations of Sandwich Shells, Mashinostroenie, M., 1973, 168 pp. (In Russian)