Keywords: variational inequality, Kirchhoff transform, penalty half-sampling method, Galerkin method.
@article{UZKU_2019_161_4_a6,
author = {M. F. Pavlova and E. V. Rung},
title = {On the solvability of a variational inequality in the filtration theory},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {552--568},
year = {2019},
volume = {161},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_4_a6/}
}
TY - JOUR AU - M. F. Pavlova AU - E. V. Rung TI - On the solvability of a variational inequality in the filtration theory JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2019 SP - 552 EP - 568 VL - 161 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2019_161_4_a6/ LA - ru ID - UZKU_2019_161_4_a6 ER -
%0 Journal Article %A M. F. Pavlova %A E. V. Rung %T On the solvability of a variational inequality in the filtration theory %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2019 %P 552-568 %V 161 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2019_161_4_a6/ %G ru %F UZKU_2019_161_4_a6
M. F. Pavlova; E. V. Rung. On the solvability of a variational inequality in the filtration theory. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 4, pp. 552-568. http://geodesic.mathdoc.fr/item/UZKU_2019_161_4_a6/
[1] Pavlova M.F, Rung E. V., “On the existence of a generalized solution of the saturated-unsaturated filtration problem”, Differ. Equations, 54:3 (2018), 352–362 | DOI | MR | Zbl
[2] Collins R., Flow of Fluids through Porous Materials, Van Nostrand, New York, 1961, 352 pp.
[3] Alt H. W., Luckhaus S., “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183:8 (1983), 311–341 | DOI | MR | Zbl
[4] Morel-Seytoux H. J., Meyer P. D., Nachabe M., Touma J., van Genuchten M. T., Lenhard R. J., “Parameter equivalence for the Brooks–Corey and van Genuchten soil characteristics: Preserving the effective capillary drive”, Water Resour. Res., 32:58 (1996), 1251–1258 | DOI
[5] Pop I. S., Yong W.-A., “A numerical approach to degenerate parabolic equations”, Numer. Math., 92 (2002), 357–381 | DOI | MR | Zbl
[6] Diersch H.-J.G., Perrochet P., “On the primary variable switching technique for simulating unsaturated-saturated flows”, Adv. Water Resour., 23:3 (1999), 271–301 | DOI
[7] Radu F., Pop I. S., Knabner P., “Order of convergence estimates in time and space for an implicit Euler, mixed finite element discretization of Richard's equation by equivalence of mixed and conformal approach”, Proc. Conf. Algoritmy 2002, eds. A. Handlovicova, Z. Kriva, K. Mikula, D. Sevcovic, 2002, 58–65
[8] Akhtareev A. A., Dautov R. Z., “Mixed variable method for simulating saturated-unsaturated flows”, Uchenye Zapiski Kazanskogo Gosudarstvennogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 149, no. 4, 2007, 58–72 (In Russian)
[9] Williams G. A., Miller C. T., Kelley C. T., “Transformation approaches for simulating flow in variably saturated porous media”, Water Res. Resear., 36:4 (2000), 923–934 | DOI
[10] Berninger H., Domain decomposition methods for elliptic problems with jumping nonlinearities and application to the Richards equation, Dissertation, Freie Univ., Berlin, 2008, 272 pp. | DOI
[11] Otto F., “$L^1$-contraction and uniqueness for quasilinear elliptic-parabolic equations”, J. Differ. Equations, 131:1 (1996), 20–38 | DOI | MR | Zbl
[12] Otto F., “$L^1$-contraction and uniqueness for unstationary saturated-unsaturated porous media flow”, Adv. Math. Sci. Appl., 7:2 (1997), 537–553 | MR | Zbl
[13] Van Duyn C. J., Peletier L. A., “Nonstationary filtration in partially saturated porous media”, Arch. Ration. Mech. Anal., 78:2 (1982), 173–198 | DOI | MR | Zbl
[14] Alt H. W., Luckhaus S., Visintin A., “On nonstationary flow through porous media”, Ann. Mat. Pura ed Appl., 136 (1984), 303–316 | DOI | MR | Zbl
[15] Pavlova M. F., Shemuranova Ye.V. Existence of a weak solution for a problem of unsaturated filtration consolidation, Russ. Math., 45:10 (2001), 54–64 | MR | Zbl
[16] Pavlova M. F., “Investigation of the well-posedness of a filtration consolidation problem with incomplete saturation”, Differ. Equations, 34:7 (1998), 967–976 | MR | Zbl
[17] Lions J.-L., Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Dunod, Paris, 1969, 554 pp. (In French) | MR
[18] Karchevskii M. M., Pavlova M. F., Equations of Mathematical Physics. Additional Chapters, Lan', St. Petersburg, 2016, 276 pp. (In Russian)
[19] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983, 464 pp. | MR | Zbl
[20] Gajewski H., Gröger K., Zacharias K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974, 281 pp. (In German) | MR | Zbl