An analog of the Cauchy formula for certain Beltrami equations
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 4, pp. 536-542
Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
The Beltrami differential equations are intrinsic generalizations of the Cauchy–Riemann system in complex analysis. Their solutions generalize holomorphic functions. As known, solutions to many problems of the complex analysis are based on application of the Cauchy formula, i.e., on the integral representation of analytical functions by curvilinear integrals over boundaries of the domains of analyticity. Particularly, this representation enables us to solve the Riemann boundary-value problem for holomorphic functions, to prove the Painleve theorem on erasing of singularities of analytical functions, and to obtain many other important results. A. Tungatarov established an analog of this representation of solutions to a certain simple case of the Beltrami equation (so-called beta-analytic functions). A. Tungatarov's representation was used by R. Abreu-Blaya, J. Bory-Reyes, and D. Peña-Peña for solving the problems stated by B. Riemann, P. Painleve, and other researchers. In this paper, we constructed integral representations for the solutions of more extensive classes of the Beltrami equations, which are analogs of the integral Cauchy formula, and described their applications.
Keywords:
Beltrami equation, integral representation.
Mots-clés : Cauchy formula
Mots-clés : Cauchy formula
@article{UZKU_2019_161_4_a4,
author = {D. B. Katz and B. A. Katz},
title = {An analog of the {Cauchy} formula for certain {Beltrami} equations},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {536--542},
publisher = {mathdoc},
volume = {161},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_4_a4/}
}
TY - JOUR AU - D. B. Katz AU - B. A. Katz TI - An analog of the Cauchy formula for certain Beltrami equations JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2019 SP - 536 EP - 542 VL - 161 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2019_161_4_a4/ LA - ru ID - UZKU_2019_161_4_a4 ER -
%0 Journal Article %A D. B. Katz %A B. A. Katz %T An analog of the Cauchy formula for certain Beltrami equations %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2019 %P 536-542 %V 161 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2019_161_4_a4/ %G ru %F UZKU_2019_161_4_a4
D. B. Katz; B. A. Katz. An analog of the Cauchy formula for certain Beltrami equations. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 4, pp. 536-542. http://geodesic.mathdoc.fr/item/UZKU_2019_161_4_a4/