Holonomy pseudogroups as obstructions to equivalence of manifolds over the algebra of dual numbers
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 438-455 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A smooth manifold over the algebra of dual numbers $\mathbb{D}$ (a $\mathbb{D}$-smooth manifold) carries the canonical foliation whose leaves are affine manifolds. Extension of charts on a $\mathbb{D}$-smooth manifold along leaf paths allows ones to associate with an immersed transversal of the canonical foliation a pseudogroup of local $\mathbb{D}$-diffeomorphisms called the holonomy pseudogroup. In the present paper, holonomy pseudogroups are applied to the study of $\mathbb{D}$-diffeomorphisms between quotient manifolds of the algebra $\mathbb{D}$ by lattices. In particular, it is shown that a $\mathbb{D}$-diffeomorphism between two such manifolds exists if and only if one of the lattices is obtained from the other by the multiplication by a dual number. In addition, it is shown that some $\mathbb{D}$-smooth manifolds naturally associated with an affine manifold are $\mathbb{D}$-diffeomorphic if and only if this manifold is radiant.
Keywords: affine manifold, manifold over algebra of dual numbers, foliated bundle, tangent bundle, tangent manifold, torus over the algebra of dual numbers, Weil bundle.
Mots-clés : foliation
@article{UZKU_2019_161_3_a8,
     author = {A. A. Malyugina and V. V. Shurygin},
     title = {Holonomy pseudogroups as obstructions to equivalence of manifolds over the algebra of dual numbers},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {438--455},
     year = {2019},
     volume = {161},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a8/}
}
TY  - JOUR
AU  - A. A. Malyugina
AU  - V. V. Shurygin
TI  - Holonomy pseudogroups as obstructions to equivalence of manifolds over the algebra of dual numbers
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2019
SP  - 438
EP  - 455
VL  - 161
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a8/
LA  - ru
ID  - UZKU_2019_161_3_a8
ER  - 
%0 Journal Article
%A A. A. Malyugina
%A V. V. Shurygin
%T Holonomy pseudogroups as obstructions to equivalence of manifolds over the algebra of dual numbers
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2019
%P 438-455
%V 161
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a8/
%G ru
%F UZKU_2019_161_3_a8
A. A. Malyugina; V. V. Shurygin. Holonomy pseudogroups as obstructions to equivalence of manifolds over the algebra of dual numbers. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 438-455. http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a8/

[1] L. E. Evtushik, Yu. G. Lumiste, N. M. Ostianu, A. P. Shirokov, “Differential-geometric structures on manifolds”, J. Sov. Math., 14 (1980), 1573–1719 | DOI | MR

[2] V. V. Vishnevskii, A. P. Shirokov, V. V. Shurygin, Spaces over Algebras, Izd. Kazan. Univ., Kazan, 1984, 264 pp. (In Russian) | MR

[3] M. A. Malakhaltsev, “An analogue of Dolbeault cohomology for varieties over the algebra of dual numbers”, Sov. Math. (Izv. VUZov), 34:11 (1990), 107–110 | MR | Zbl

[4] M. A. Malakhaltsev, “A class of manifolds over the algebra of dual numbers”, Tr. Geom. Semin., 21, 1991, 70–79 (In Russian) | MR | Zbl

[5] G. Thompson, U. Schwardmann, “Almost tangent and cotangent structures in the large”, Trans. Am. Math. Soc., 327:1 (1991), 313–328 | DOI | MR | Zbl

[6] M. A. Malakhaltsev, “Structures of a manifold over the algebra of dual numbers on a torus”, Tr. Geom. Semin., 22, 1994, 47–62 (In Russian) | MR | Zbl

[7] I. Vaisman, “Lagrange geometry on tangent manifolds”, Int. J. Math. Math. Sci., 2003, no. 51, 3241–3266 | DOI | MR | Zbl

[8] A. A. Malyugina, V. V. Shurygin, “Complexes of differential forms associated with a normalized manifold over the algebra of dual numbers”, Lobachevskii J. Math., 37:1 (2016), 66–74 | DOI | MR | Zbl

[9] V. V. Shurygin, “On the structure of complete manifolds over Weil algebras”, Russ. Math., 47:11 (2003), 84–93 | MR | Zbl

[10] A. A. Malyugina, V. V. Shurygin, “Holonomy representation for a class of manifolds over the algebra of dual numbers”, Izv. Penz. Gos. Pedagog. Univ., 2011, no. 26, 128–136 (In Russian)

[11] A. A. Malyugina, V. V. Shurygin, “Holonomy pseudogroup of a manifold over the algebra of dual numbers and some its applications”, Russ. Math., 63:2 (2019), 74–79 | DOI

[12] P. Molino, Riemannian Foliations, Birkhäuser, Boston, 1988, 339 pp. | MR | Zbl

[13] V. V. Shurygin, “Structure of smooth mappings over Weil algebras and the category of manifolds over algebras”, Lobachevskii J. Math., 5 (1999), 29–55 | MR | Zbl

[14] W. P. Thurston, Three-Dimensional Geometry and Topology, Princeton Univ. Press, Princeton, N.J., 1997, 328 pp. | MR | Zbl

[15] V. V. Shurygin, “Smooth manifolds over local algebras and Weil bundles”, J. Math. Sci., 108:2 (2002), 249–294 | DOI | MR | Zbl

[16] J. Phillips, “The holonomic imperative and the homotopy groupoid of a foliated manifold”, Rocky Mt. J. Math., 17:1 (1987), 151–165 | DOI | MR | Zbl

[17] Z. Pogoda, “Horizontal lifts and foliations”, Rend. Circ. Mat. Palermo. Ser. II, 38, Suppl. 21 (1989), 279–289 | MR

[18] C. Kosniowski, A First Course in Algebraic Topology, Cambridge Univ. Press, Cambridge, 1980, 269 pp. | MR | MR | Zbl

[19] F. Diamond, J. Shurman, A first course in modular forms, Springer, N. Y., 2005, 436 pp. | MR | Zbl

[20] V. V. Shurygin, “Radiance obstructions for smooth manifolds over Weil algebras”, Russ. Math., 49:5 (2005), 67–79 | MR | Zbl

[21] W. Goldman, M. W. Hirsch, “The radiance obstruction and parallel forms on affine manifolds”, Trans. Am. Math. Soc., 26:2 (1984), 629–649 | DOI | MR